

GraphQL or Bust
To Use it Or Not to Use It? That is The
Question.

Nordic APIs

© 2017 Nordic APIs

Also By Nordic APIs
Summer Collection

Developing the API Mindset

Winter Collection

The API Lifecycle

Securing The API Stronghold

API-Driven DevOps

The API Economy

Programming APIs with the Spark Web Framework

How to Successfully Market an API

API Design on the Scale of Decades

http://leanpub.com/u/NordicAPIs
http://leanpub.com/nordicapis-summercollection
http://leanpub.com/developingtheapimindset
http://leanpub.com/wintercollection
http://leanpub.com/api-lifecycle
http://leanpub.com/securing-the-api-stronghold
http://leanpub.com/api-driven-devops
http://leanpub.com/the-API-economy
http://leanpub.com/using-spark-java-to-program-apis
http://leanpub.com/how-to-market-an-API
http://leanpub.com/API-Design

This release is dedicated to the over 30 thought leaders that
have contributed to the Nordic APIs blog over the past few

years!

Contents

Preface: Introduction to GraphQL i

Is GraphQL The End of REST Style APIs? 1
Defining REST and its Limitations 2
The End Of The Status Quo 8
Conclusion . 8

5 Potential Benefits of Integrating GraphQL . . . 10
What is GraphQL 11
1 - More Elegant Data Retrieval 12
2 - More Backend Stability 13
3 - Better Query Efficiency 14
4 - GraphQL Is a Specification 16
5 - GraphQL Improves Understanding and Or-

ganization . 17
Who Uses It . 17
Conclusion: Assess 20

How to Wrap a REST API in GraphQL 21
What is GraphQL? 22
Defining a Schema 23
Alternatives to this Method 27
To Wrap or Not to Wrap 29
Conclusion: Wrap or Recode 30

CONTENTS

Best Practices for AHealthy GraphQL Implemen-
tation . 31
Dogma vs Practices 32
Conclusion . 38

Security Concerns toConsiderBefore Implement-
ing GraphQL . 40
GraphQL - A Summary 41
Implied Documentation vs. Actual Documentation 42
Unified Failures . 43
Data and Server Transaction Volumes 44
Information Hiding and Chattiness 45
Authorization and GraphQL 46
Measured Optimism 47

7 Unique Benefits of Using GraphQL in Microser-
vices . 49
Clearly Separated Data Owners 50
Data Load Control Granularity 50
Parallel Execution 51
Request Budgeting 52
Powerful Query Planning 53
Service Caching . 53
Easy Failure Handling and Retries 54
Case Study ofMicroservices In Action: HowGraphQL

Benefits Yelp 55
Final Thoughts . 56

ComparingGraphQLWithOtherMethods to Tether
API Calls . 58
What Do We Mean By Tethering API Calls? 59
Benefits of Tethering API Calls 60
Drawbacks of Tethering API Calls 62
Use Cases . 63
Alternatives — GraphQL 64

CONTENTS

Conclusions . 65

The Power of Relay: The Entry Point to GraphQL . 67
What’s the Difference Between GraphQL and

Relay? . 68
What is Relay? . 69
The Good . 70
The Bad . 74
A REST Replacement 75
Conclusion . 76

10 GraphQL Consoles in Action 78
GraphiQL: GraphQL API Explorer 79
1: GraphQL Hub 80
2: Brandfolder . 81
3: Buildkite . 81
4: EHRI . 82
5: GDOM . 82
6: GitHub . 83
7: HIV Drug Resistance Database 84
8: Helsinki Open Data 84
9: melodyCLI . 85
10: SuperChargers.io 86
11: Microsoft . 87
Does Increased Usage Validate GraphQL? 88
Tips on Making GraphQL / GraphiQL Awesome . 89
More Resources: 89

10 Tools and Extensions For GraphQL APIs 91
List of 10+ Tools & Extensions for GraphQL APIs 92
1: GraphiQL . 92
2: GraphQL Voyager by APIs.guru 93
3: GraphCMS . 94
4: GraphQL Docs by Scaphold.io 95
5: GraphQL Faker 96

CONTENTS

6: Swagger to GraphQL 97
7: GraphQL IDE . 97
8: GraphQL Network 97
9: Graphcool . 98
10: Optics by Apollo 99
Final Thoughts . 100
Resources . 101

What The GraphQL Patent Release Means For
the API Industry 102
Background . 103
Developers Express Concern 104
Out of the Frying Pan… 106
Is This a Concern? 107
Oil and Water . 108
Final Thoughts . 109
Stay Connected . 111

Nordic APIs Resources 112

Endnotes . 114

Preface: Introduction to
GraphQL

Within the last couple of years, there has been a resur-
gence of discussion around API design standards such
as REST, gRPC, GraphQL, and many others. While the
Representational State Transfer (REST) methodology has
been a perfect fit for many web APIs - for the past decade
ormore in some cases - some developers see operational
improvements within nuanced methods that break from
these original constructs.

GraphQL, the query
language altering
how we interact with
APIs

Developed by Facebook, GraphQL
presents a sea change in how API
providers enable access to their
data, and can bring high usability
benefits to consumers. Smart API
owners put emphasis into treat-
ing their services as a product;
this means improving the devel-
oper experience and fine-tuning the
user onboarding mechanism. As
GraphQL enables an unparalleled

ability to display API endpoints and test call behaviors, as
well as an operational boost in aggregating API responses,
it could very well be the tool API owners are searching for
to improve their developer experiences.

But we aren’t quick to bandwagon on any new technology
without first opening the floor to debate. So, over the past
year we exhausted many subjects on the blog, throwing
GraphQL into the security ring, judging the process of

Preface: Introduction to GraphQL ii

migrating a REST API to GraphQL, vetting any outsand-
ing licensing issues, and searching for GraphQL APIs in
practice today as evidence of its use. We’ve compared
it to other methods of linking API calls, charted industry
best practices, and looked at the growing spectrum of
GraphQL tooling.

In this volumewe’ve aggregated nearly all of the GraphQL
knowledge that has been shared on the Nordic APIs blog
and at our conferences. Being a relatively new technology,
some may still have questions about it, and we hope
to answer those questions as well as open avenues of
discussion around new concerns.

The truth is your current systems likely won’t bust without
GraphQL. The title for this eBook represents the fer-
vent community adoptionwe’ve seenquickly embrace the
technology.

So, please enjoy GraphQL or Bust, and let us know how
we can improve. If you haven’t yet, consider following us,
and signing up to our newsletter for curated blog updates
and future event announcements. We also accept contri-
butions from the community - if interested please visit our
Create With Us page to pitch an article.

Thank you for reading!

– Bill Doerrfeld, Editor in Chief, Nordic APIs

Connect with Nordic APIs:

Facebook | Twitter | Linkedin | Google+ | YouTube

Blog | Home | Newsletter | Contact

https://twitter.com/nordicapis
http://nordicapis.com/newsletter/
http://nordicapis.com/blog/
http://nordicapis.com/event-calendar/
http://nordicapis.com/create-with-us/
http://facebook.com/nordicapis
http://twitter.com/nordicapis
https://www.linkedin.com/company/nordic-apis
https://plus.google.com/u/0/+Nordicapis/posts
https://www.youtube.com/user/nordicapis
http://nordicapis.com/blog/
http://nordicapis.com/
http://nordicapis.com/newsletter/
mailto:info@nordicapis.com

Is GraphQL The End of REST
Style APIs?

The world of APIs is one of innovation and constant iter-
ation. The technologies that once drove the largest and
best solutions across the web have been supplanted and
replaced by new, more innovative solutions.

That is why it’s surprising, then, that many developers
have clung to what they consider the bastions of web
API development. Such a bastion is the REST architecture.
To some developers, REST is an aging and incompleted
proposition that does not meet many of the new devel-
opment qualifications required by the unique challenges
faced by modern development groups.

Today, we’re going to look at a technology that is poised
to replace, or at the very least, drastically change the way
APIs are designed and presented — GraphQL. We’ll dis-

http://nordicapis.com/designing-a-true-rest-state-machine/

Is GraphQL The End of REST Style APIs? 2

cuss a little bit of history, what issues REST suffers from,
and what GraphQL does differently, tracking a presenta-
tion given by Joakim Lundborg at our Platform Summit.

“The way we design our APIs structures the
waywe think [about] the tools and applications
we build.” - Joakim Lundborg, Wrapp

Defining REST and its Limitations

REST or Representational State Transfer, is an API design
architecture developed to extend and, in many cases,
replace older architectural standards. Objects in REST are
defined as addressable URIs, and are typically interacted
with using the built-in verbs of HTTP — specifically, GET,
PUT, DELETE, POST, etc. In REST, HATEOAS (Hypermedia
As The Engine Of Application State) is an architecture
constraint in which the client interacts with hypermedia
links, rather than through a specific interface.

With REST, the core concept is that everything is a re-
source. While REST was a great solution when it was first
proposed, there are some pretty significant issues that
the architecture suffers from. According to Lundberg, the
circumstances have changed, giving rise to the need for
new technical implementations:

“Many things have happened. We have a lot of
mobile devices with lots of social and very data
rich applications being produced…Wenowhave
very powerful clients, and we have data that
is changing all the time. This brings some new
problems.”

Here are some issues Lundberg sees with REST:

https://www.youtube.com/watch?v=pi4HoCanLAk&feature=youtu.be
https://www.youtube.com/watch?v=pi4HoCanLAk&feature=youtu.be
http://nordicapis.com/the-api-that-defied-rest-most-common-instances-of-unrestful-apis-and-what-really-matters/
http://nordicapis.com/designing-a-true-rest-state-machine/

Is GraphQL The End of REST Style APIs? 3

Round Trip and Repeat Trip Times

REST’s defining feature is the ability to reference resources
— the problem is when those resources are complicated
and relational in a more complex organization known
as a graph. Fetching these complicated graphs requires
round trips between the client and server, and in some
cases, repeated trips for network conditions and appli-
cation types.

What this ultimately results in is a systemwhere themore
useful it is, the slower it is. In other words, as more
relational data is presented, the system chokes on itself.

Over/Under Fetching

Due to the nature of REST and the systems which often
use this architecture, REST APIs often result in over/under
fetching.Over fetching is whenmore data is fetched than
required, whereas under fetching is the opposite, when
not enough data is delivered upon fetching.

When first crafting a resource URI, everything is fine —
the data that is necessary for functionality is delivered,
and all is well. As the API grows in complexity, and the
resources thus grow in complexity as well, this becomes
problematic.

Applications that don’t need every field or tag still receive
it all as part of the URI. Solutions to fix this, such as ver-
sioning, result in duplicate code and “spaghettification” of
the code base. Going further, specifically limiting data to
a low-content URI that is then extensible results in more
complexity and resultant under fetching in poorly formed
queries.

http://nordicapis.com/simultaneous-platform-wide-versioning-how-to-implement-api-to-sdk-synchronicity/
http://nordicapis.com/simultaneous-platform-wide-versioning-how-to-implement-api-to-sdk-synchronicity/
http://nordicapis.com/balancing-complexity-and-simplicity-in-api-design/

Is GraphQL The End of REST Style APIs? 4

Weak Typing and Poor Metadata

REST APIs often unfortunately suffer from poor typing.
While this issue is argued by many API providers and
commentators (often with the caveat that HTTP itself
contains a typing system), the fielding system solutions
offered simply do not match the vast range and scope of
data available to the API.

Specifically, this is an argument in favor of strong typing
rather than weak typing. While there are solutions that
offer typing, the delineation between weak and strong is
the issue here, not an argument defused by simply stating
“well there is typing”. The strength and quality of typing
does matter.

This is more a matter of age and mobility rather than an
intrinsic problem, of course, and can be rectified using
several solutions (of which GraphQL is one).

Improper Architecture Usage

REST suffers from the fact that it’s often used for some-
thing it wasn’t really designed for, and as a result, it often
must be heavily modified. That’s not to say that REST
doesn’t have its place — it’s only to say that it may not
be the best solution for serving client applications. As
Facebook says in its own documentation:

“These attributes are linked to the fact that
“REST is intended for long-lived network-based
applications that span multiple organizations”
according to its inventor. This is not a require-
ment for APIs that serve a client app built
within the same organization.”

https://facebook.github.io/react/blog/2015/05/01/graphql-introduction.html
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven

Is GraphQL The End of REST Style APIs? 5

All of this is to say that GraphQL is functionally the end
of REST — but not in the way that terminology implies.
Until now, REST has been seen as the foundational archi-
tecture of modern APIs, and in a way, the last bastion of
classic API design. The argument here is not made to fully
sever REST from our architectural lexicon, but instead to
acknowledge that there are several significant issues that
are not properly and fully rectified by the solutions often
proffered by its proponents. Therefore, the answer to the
question of this piece— is GraphQL The End of REST Style
APIs? — is quite simple. Yes, using GraphQL is the end of
REST style APIs as we know it — specifically through the
extension of base functionality and a reconsideration of
data relations and functions. ## 4 Things GraphQL Does
Better than REST

“GraphQL declares everything as a graph… You
say what you want, and then you will get that.”

Now that we’ve seen the issues with REST, how, exactly,
does GraphQL solve them?

REST Has Many Roundtrips - GraphQL Has Few

The biggest benefit of GraphQL over REST is the simple
fact that GraphQL has fewer roundtrips than REST does,
and more efficient ones at that. GraphQL unifies data
that would otherwise exist in multiple endpoints (or even
worse, ad hoc endpoints), and creates packages.

By packaging data, the data delivery is made more effi-
cient, and decreases the amount of resources required
for roundtrip calls. This also fundamentally restructures
the relationship between client and server, placing more
efficiency and control in the hands of GraphQL clients.

Is GraphQL The End of REST Style APIs? 6

REST Has Poor Type Systems - GraphQL Has a
Sophisticated One

While REST can have a type system through implemen-
tations of HTTP, REST itself does not have a very so-
phisticated typing system. Even in good implementations,
you often end up with variants of type settings — for
example, clientdatamobile and clientdatadesktop — to fit
REST standard calls.

GraphQL solves this with a very sophisticated typing sys-
tem, allowing for more specific and powerful queries.

REST Has Poor Discoverability - GraphQL Has
Native Support

Discoverability is not native to REST, and requires specific
and methodical implementations of HATEOAS, Swagger,
and other such solutions in order to be fully discover-
able. The key there is “fully discoverable” — yes, REST
has HATEOAS as a “native” discovery system, but it lacks
some important elements of effective discoverability—
namely known document structure, server response con-
straint structures, and an independence from standard,
restrictive error mechanisms in HTTP.

While this and many other points of negative consider-
ation towards REST is often answered with “but you can
add that functionality!”, the fact that it lacks it by default
only adds to the complexity we’re trying to move away
from.

Because GraphQL is based on relational data and, when
operating on aproperly formed schema, is self describing,
GraphQL is by design natively discoverable. Discoverabil-
ity is incredibly important, both in terms of allowing for

http://nordicapis.com/improve-api-experience-using-hypermedia/

Is GraphQL The End of REST Style APIs? 7

extensible third-party functionality and interactions and
for on-boarding developers and users with an easy to
understand, easy to explore system of functions.

REST Is Thin Client/Fat Server - GraphQL is Fat
Client/Fat Server

In REST design, the relationship between client and server
is well-defined, but unbalanced. REST uses a very thin
client, depending on processing from the server and
the endpoints that have been defined for it. Since the
bulk of the processing and control is placed firmly on
the server, this strips power from the client, and also
stresses server side resources. Until now that has been
fine, but as devices grow in processing power and ability,
this client/server relationship may need rethinking.

GraphQL, however, is different. By offloading specifica-
tion of expected data format to the client and structuring
data around that call on the server side, we have a Fat
Client/Fat Server (or even a Thin Client/Thin Server de-
pending on approach) in which both power and control
are level across the relationship.

This is very powerful when one considers that the data
type being requested will be used for specific purposes
as regulated and requested by the Client itself — it makes
sense, then, that moving from a Thin/Fat relationship to
a Fat/Fat or Thin/Thin relationship would improve this
functionality on the Client side while freeing up Server re-
sources. Of course, this assumes that the client is capable
of handling this burden.

Is GraphQL The End of REST Style APIs? 8

The End Of The Status Quo

There’s a tendency in the tech space for providers and
developers of new technologies to proclaim the end of an
era with each solution. While it’s common to discussion
in the field, the fact is that there are very few complete
paradigm shifts that signal an irrevocable end to existing
technologies.

Innovation depends on prior technologies to create new
functionality. Therefore, when a new solution is designed,
it’s not replacing the solution, but rather iterating. The
same is true here. While GraphQL may not be the com-
plete demise of REST, it is the end of the status quo.
While there are a great many solutions to the issues
raised here, they all depend on further integrations and
modifications. GraphQL is essentially an overhaul, and
one which improves the base level functionality of the API
itself.

Conclusion

What we have here is a basic value proposition. GraphQL
does what it does well, but the question of integration lies
directly on what kind of data you’re processing, and what
issues your API is creating. For simple APIs, REST works
just fine, but as data gets more complex and the needs of
the data providers climbs, so too will the need for more
complex and powerful systems.

Adopting GraphQL as an adjunct or extension of the REST
ideology, while removing REST from the intellectual space
of “too big to not use”, will directly result inmore powerful
APIs with easier discoverability and greatermanageability

http://nordicapis.com/how-to-wrap-a-rest-api-in-graphql/
http://nordicapis.com/how-to-wrap-a-rest-api-in-graphql/

Is GraphQL The End of REST Style APIs? 9

of the data they handle.

5 Potential Benefits of
Integrating GraphQL

GraphQL is incredibly powerful — so powerful, in fact,
that it is used by corporations such as Facebook to drive
their large, complex social systems for billions of users.
Despite this, the language is still relatively nascent, and
its usage has yet to reach the dizzying heights that those
languages it replaces and augments occupy.

In this piece, we’ll discover what GraphQL is, and what
makes it so powerful. We’ll give you five compelling rea-
sons to adopt it as part of your system and ecosystem,
and highlight some public use cases that demonstrate the
success of such adoption and integration.

5 Potential Benefits of Integrating GraphQL 11

What is GraphQL

GraphQL is an application layer query language. What
this means is that GraphQL is designed to interpret a
string from a server or client and return that data in an
understandable, stable, and predictable format. As the
official website for GraphQL puts it, “Describe your data,
ask for what you want, get predictable results.”

GraphQL does this via simple, plain to understand re-
quests and statements. A simple example from the official
website highlights this simplicity perfectly. This is a valid
descriptor within GraphQL:

type Project {

name: String

tagline: String

contributors: [User]

}

Which, when paired with an effective and simple request:

{

project(name: "GraphQL") {

tagline

}

}

Returns a clean, easy, and simple result:

http://graphql.org/

5 Potential Benefits of Integrating GraphQL 12

{

"project": {

"tagline": "A query language for APIs"

}

}

The simplicity and power behind the language comes
from its chief architects. GraphQL is principally an effort
from Facebook, with a variety of additional contibutors
dedicating their efforts to boost efficency.

GraphQL came from the result of Facebook’s transition
away from HTML5 applications on mobile to support-
ing more robust, native applications. As the need for
a stronger backend and easier universal interface pre-
sented itself, GraphQL quickly emerged as the language
of choice.

A quick word on GraphQL’s implementations
— there is a client often used as an entry
point to GraphQL known as Relay which we
will specifically cover in a following piece.

With all this said, what makes GraphQL so powerful?

1 - More Elegant Data Retrieval

GraphQL is all about simplicity—andwith that simplicity
comes a more elegant methodology and experience con-
cerning data retrieval. Because data is collected under a
common endpoint or call that is variable concerning the
type of data and request as stated in the initial call, several
huge benefits are intrinsic to the call system.

https://facebook.github.io/react/acknowledgements.htm

5 Potential Benefits of Integrating GraphQL 13

First and foremost, using GraphQL eliminates ad hoc
endpoints and roundtrip object retrievals. Imagine you
were a delivery driver looking at amap of where to deliver
a package. On that map, you have fifteen possible entry
points to streets near the street you need to get to—each
with their own speed limits, limitations of cargo weight,
and allowed vehicle type.

The complexity incurred in this situation is absolutely
incredible, so much so that it would delay delivery. Now
imagine the same situation, but with only a single street
and will well-defined, commonly known rules — that’s
what GraphQL can provide.

2 - More Backend Stability

With simplicity comes stability — this is a basic fact of
life. The more simple a process is, the less likely there are
to be faults in the planning, construction, execution, and
continued operation over time. GraphQL makes queries
more simple and elegant — and as a result, improves the
stability of the entire process.

How GraphQL does this is quite complex, but there’s
one methodology in particular that is worth mentioning.
Because data is delivered in a structured, defined way in-
dependent on the client request (as the rules are dictated
by GraphQL itself, not the application per se), data can be
manipulated, changed, and altered in the backend code
base without directly requiring changes in how the client
functions.

In the traditional server-client relationship, this is sim-
ply not possible — the data is available, queryable, and
usable, but the format and method are dictated largely

5 Potential Benefits of Integrating GraphQL 14

by the client. As long as the general request fits into
a standard methodology as dictated by the language
or documentation, that data is delivered successfully.
Change how the database works, however, or update the
application independent of legacy support systems, and
you have a “broken” application.

This is not a problem with GraphQL. The entry point
defined by GraphQL is almost like a translatable layer —
the structure of request is dictated by the server, and then
routed to the necessary resources and systems by the
language path itself. Accordingly, an application backend
can be overhauled without necessitating a complete re-
structuring of the client application or the common call
method, as the methodology is controlled directly by the
server in the first place.

3 - Better Query Efficiency

GraphQL unifies data that would otherwise require mul-
tiple endpoints, or in the worst case scenario ad hoc
endpoints and complex repeat retrievals, and gives the
requester a single, simple entry point.

Because data is defined on the server with a graph-based
scheme, data can be delivered as a package rather than
through multiple calls. For instance, the following code
for a content and comment query would have a single
endpoint in GraphQL:

5 Potential Benefits of Integrating GraphQL 15

{

latestPost {

_id,

title,

content,

author {

name

},

comments {

content,

author {

name

}

}

}

}

In traditional API query languages, this would take at least
8 calls, and would have to point to specific endpoints
to differentiate the content of the post itself and the
comment content.

This doesn’t just increase efficiency of data delivery,
either — it fundamentally decreases the amount of re-
sources required for each data request. Furthermore,
retrieval constraints are declared with a declarative-hier-
archical query to a single endpoint, reducing the call data
demands less for the client.

The biggest net benefit of this entire process is, of course,
a fundamental restructuring of the relationship between
the client and the server. In GraphQL, the server pub-
lishes clear and explicit rules specific to the application,
and the client requests that language with common data
queries. Simply said — developers are able to impose

5 Potential Benefits of Integrating GraphQL 16

data restrictions more naturally and with less impact on
the consumer.

4 - GraphQL Is a Specification

Perhaps one of the greatest benefits of GraphQL is that
the overhead for adoption is low specifically due to its
status as a specification. While there are always new tools
on the market, many developers shy away from adopting
these solutions because they’re “too involved” or “too
invested” in their REST architecture.

As a specification, GraphQL is a wrapper that can be
defined — you don’t have to replace a REST system.
This means that developers can reap the entirety of the
benefits of GraphQL while ignoring the cost overhead of
its incorporation.

A huge benefit of this GraphQL wrapping is also in how it
changes the relationship between data and the systems
that require said data. Data in GraphQL isn’t limited by
the language or the datatype, and is instead limited by
the server descriptions as defined to the client (so, in
effect, not a limitation at all). Data wrapped in GraphQL,
regardless of the underlying language or system, can be
shared between variations in standard API schemas and
the wide range of languages which create them.

More specifically, this also means that GraphQL is funda-
mentally compatible with anything that REST-centric APIs
are compatible with — therefore, the entry point for both
GraphQL and its interactiveness with REST dependent
systems is relatively low.

http://graphql.org/blog/rest-api-graphql-wrapper/
http://graphql.org/blog/rest-api-graphql-wrapper/

5 Potential Benefits of Integrating GraphQL 17

5 - GraphQL Improves Understanding
and Organization

Perhaps the biggest benefit of implementing GraphQL is
one of importance to the API ecosystemas awhole—99%
of the time, an API can be organized into a simple and
understandable graph schema, and doing so forces you
to better organize and understand your data, the flow of
that data, and the inefficiencies and errors in that system.

While this has a net benefit to the developer, it has huge
positive implications for the development ecosystem
as a whole. Because GraphQL attaches types to data,
types errors between applications and your server and
GraphQL compliant applications to other applications start
to disappear.

What we’re talking about here is a type of “universal
translator”, providing data translation between different
services while removing the bottleneck typically encoun-
tered, Furthermore, this removes pressure towards appli-
cation developers to ensure compatibility and mutations.

A huge benefit to developers and amore positive interac-
tion in the ecosystem — what’s not to love?

Who Uses It

BecauseGraphQL is extremely powerful, it’s been used by
several providers who need stable readability with quick
speed and indexing. Most of the use cases for GraphQL
are therefore those who require high data throughput
with ease of sorting, which is certainly represented clearly
by its most high profile users.

5 Potential Benefits of Integrating GraphQL 18

One example of how powerful GraphQL is when it comes
to handling high data throughput in a relational matter is
Hudl, a sports video analytics provider. Essentially, Hudl
takes video of sporting events, practices, and other situa-
tions and provides professional feedback for each player
and a general overview incorporating this feedback.

Accordingly, the data processed by Hudl is strictly rela-
tional — unlike other solutions, the data being handled
isn’t simple one-to-one relational data. Each player be-
longs to a team, but each player has their own data which
is attached to specific activities, skills, and approaches.

In a traditional query language, comparing and contrast-
ing these hugely discrepant data points between each
player and then each teamwould require amassive amount
of data combination, or at the very least, a huge range
of calls being called multiple times to each server system
each second.

With GraphQL, each item is described clearly, and re-
quested specifically by an application. GraphQL allows
for a small range of endpoints that provide this data in
a consumable, easily understandable method. This also
means that the data generated by Hudl isn’t strictly tied
to their application, and their application alone — since
it’s described directly, the data can be imported into team
planning applications or health tracking applications for
tracking of physical health, performance in certain envi-
ronments, and other such relational queries.

This interactiveness can be seen in another application
of GraphQL, AlphaSights. AlphaSights can be seen as a
“middle man” of sorts, but one of incredible power —
connecting clients with experts and the services that they
can provide. While this seems simple on its face value, the
underlying data is very valuable, not just to AlphaSights,

http://www.hudl.com/
https://www.alphasights.com/

5 Potential Benefits of Integrating GraphQL 19

but to those they provide this data to.

The engineers at AlphaSights stated themselves the huge
value of integrating GraphQL into their system to reduce
complexity and improve exchange of data:

“GraphQL gave us one way in, and one way
out. All data was resolved through one object,
Graph::QueryType. The presence of only one ob-
ject provided a much easier learning curve for
new developers looking at the code base, and
the higher level concepts each have their own
resolver making it easy to narrow down what
each term meant right down to the database
level. The mapping of types from a query into
ruby objects is very intuitive … By making the
server to consumer contract flexible, we get
the benefit of muchmore agile teams, and less
debate on how and if the consumer receives
that data.We have also found thatmaintaining
the services is much easier. There are no “v2”
routes to be added, and the type systemallows
the consumer to easily discover updates. We
have also taken advantage of “GraphApi::Schema.middleware”
to monitor which attributes are being used,
and help identify legacy types/fields that we
can remove,whichweare going to open source
in the future.”

Being able to not only provide data in an easy format,
but to make that data easily interactable and digestible
by novice developers is a huge benefit, and makes data
generated truly extensible.

GraphQL isn’t only for huge complex databases, either —
it can easily be used to create relatively simple databases

https://m.alphasights.com/the-journey-to-graphql-from-rest-a93508297e4d#.ordjs0pf0
https://m.alphasights.com/the-journey-to-graphql-from-rest-a93508297e4d#.ordjs0pf0

5 Potential Benefits of Integrating GraphQL 20

with greater efficiency. A great example of this is Beek.io.
It’s fundamentally a social network, albeit a niche one,
focusing on books and those who love them. While the
database itself is relatively simple— author, name, genre,
etc. — the way this content is handled is supremely sim-
plified under GraphQL.

By simplifying calls to a single entry point, you prevent
different endpoints from providing the same data in dif-
ferent ways, and increase the understandability of the
data that is delivered. Because of this, while Beek.io is a
rather simple incarnation of the social media sphere, it
is extremely responsive, and delivers data in a way that
book lovers can actually use to better their reading library
(and perhaps their friends list).

Conclusion: Assess

While GraphQL is obviously powerful, there are some
arguments against it — chiefly that it’s still in its infancy.
API Evangelist sees GraphQL as a way around “properly
getting to know your API resources,” doubting whether
the majority of non-technical API consumers will find
it useful. Others have expressed that an organization
shouldn’t integrate GraphQL simply because a behemoth
like Facebook or Github has a GraphQL API.

ThoughtWork’s 2017 Technology Radar, which reaches
action verdicts for emerging Techniques, Tools, Platforms,
and Languages, labels GraphQL asASSES. Whether or not
to adopt GraphQL should at the very least be assessed;
For as we’ve seen through this chapter, it can help ensure
data is efficiently generated and accessed, and can make
the applications powered by the server that much more
powerful and extensive.

https://www.beek.io/
http://apievangelist.com/2016/08/30/graphql-seems-like-we-do-not-want-to-do-the-hard-work-of-api-design/
http://www.programmableweb.com/news/just-because-github-has-graphql-api-doesn%E2%80%99t-mean-you-should-too/analysis/2016/09/21
https://www.thoughtworks.com/radar/languages-and-frameworks/graphql

How to Wrap a REST API in
GraphQL

As we saw in the last chapter, GraphQL is a powerful
tool. As with any emergent tool in the API space, however,
there’s some disagreement on exactly how to implement
it, and what the best practices for its implementation and
use case scenarios are.

Have no fear, dear reader — we’re here to sort this all
out. We’re going to discussGraphQL, where it came from,
where it’s going, andwhy you should consider implement-
ing it. We’ll focus on how to wrap a RESTful API with
GraphQL, and how this functions in everyday usage.

How to Wrap a REST API in GraphQL 22

What is GraphQL?

For those who are unfamiliar, GraphQL is an application
layer query language. It interprets a string from a server
or client, returning the data in a pre-defined schema as
dictated by the requester. As the GraphQL official site
states: “Describe your data, ask for what you want, get
predictable results.”

The way data is requested is quite clean and elegant. The
following is a valid data descriptor:

type Project {

name: String

tagline: String

contributors: [User]

}

When this is requested as such:

project(name: "GraphQL") {

tagline

}

}

It returns a clean, easy, and simple result:

{

"project": {

"tagline": "A query language for APIs"

}

}

How to Wrap a REST API in GraphQL 23

A GraphQL implementation results in more elegant data
retrieval, greater backend stability,more efficient queries,
and improved organization with a language that has low
adoption overhead. With this being said, let’s get into the
meat of how exactly we can implement GraphQL in a
RESTful API.

Defining a Schema

The first step to wrapping a RESTful API is to define a
schema. Schemas are essentially like phonebooks — a
stated, commonmethodology of recognizing andorganiz-
ing your data and the interactions concerning said data.

Whenproperlywrapped, a RESTful APIwill funnel all influx
and outflux of data through the schema itself— this is the
main power of the GraphQL system, and is where it gets
its universality.

In following with the official GraphQL documentation, the
implementation we’re going to show today is simplified,
with some issues in terms of performance against more
complex and time-consuming alternative implementations.
This solution, however, requires no architectural or server
augmentations, and is a perfect stepping off point that we
can take to move forward.

The implementation as suggested by the GraphQL docu-
mentation is as follows:

http://graphql.org/learn/

How to Wrap a REST API in GraphQL 24

import {

GraphQLList,

GraphQLObjectType,

GraphQLSchema,

GraphQLString,

} from 'graphql';

const BASE_URL = 'https://myapp.com/';

function fetchResponseByURL(relativeURL) {

return fetch(`${BASE_URL}${relativeURL}`).then(res =>\

res.json());

}

function fetchPeople() {

return fetchResponseByURL('/people/').then(json => js\

on.people);

}

function fetchPersonByURL(relativeURL) {

return fetchResponseByURL(relativeURL).then(json => j\

son.person);

}

const PersonType = new GraphQLObjectType({

/* ... */

fields: () => ({

/* ... */

friends: {

type: new GraphQLList(PersonType),

resolve: person => person.friends.map(getPersonBy\

URL),

},

}),

});

How to Wrap a REST API in GraphQL 25

const QueryType = new GraphQLObjectType({

/* ... */

fields: () => ({

allPeople: {

type: new GraphQLList(PersonType),

resolve: fetchPeople,

},

person: {

type: PersonType,

args: {

id: { type: GraphQLString },

},

resolve: (root, args) => fetchPersonByURL(`/peopl\

e/${args.id}/`),

},

}),

});

export default new GraphQLSchema({

query: QueryType,

});

What this schema is basically doing is attaching JavaScript
methods to the variables, and establishing the methodol-
ogy by which the data is returned. The beginning and end
is a necessary statement — the import of the GraphQL
strictures, and the export of the GraphQL schema proper:

How to Wrap a REST API in GraphQL 26

import { GraphQLSchema } from 'graphql';

export default new GraphQLSchema({

query: QueryType,

});

By establishing two constants— a data type, and a query
type — data is collated internally through the API, while
allowing for fetching given a specific set of arguments
given by the requester:

const PersonType = new GraphQLObjectType({

/* ... */

fields: () => ({

/* ... */

friends: {

type: new GraphQLList(PersonType),

resolve: person => person.friends.map(getPersonBy\

URL),

},

}),

});

const QueryType = new GraphQLObjectType({

/* ... */

fields: () => ({

allPeople: {

type: new GraphQLList(PersonType),

resolve: fetchPeople,

},

person: {

type: PersonType,

args: {

id: { type: GraphQLString },

How to Wrap a REST API in GraphQL 27

},

resolve: (root, args) => fetchPersonByURL(`/peopl\

e/${args.id}/`),

},

}),

});

What this functionally does is establish the data and ac-
cepted query methodology for email, id, and username, and
resolves the data by accessing the properties of the person

object as attached in the code. While this technique relies
on some functionality in Relay, a companion to GraphQL
often considered inseparable, the principle remains the
same — predictable, queryable data.

Of note for this approach, however, is the fact that the
types in question were hand-defined. While this works
for small systems, it’s not a tenable solution for larger
APIs. In such a case, solutions like Swagger can define type
definitions automatically, which can then be “typified” for
the GraphQL schema with relative ease.

Alternatives to this Method

Thankfully, there are some very enterprising developers
who have taken GraphQL to its logical extent, automating
the process of creating the schema itself. One such solu-
tion is the graphql-rest-wrapper. Designed to easily create
wrapped REST APIs, this technique is simple to employ:

http://nordicapis.com/top-specification-formats-for-rest-apis/
https://www.npmjs.com/package/graphql-rest-wrapper

How to Wrap a REST API in GraphQL 28

const wrapper = new gqlRestWrapper('http://localhost:90\

90/restapi', {

name: 'MyRestAPI',

generateSchema: true,

saveSchema: true,

graphiql: true

})

app.use('/graphql', wrapper.expressMiddleware())

This solution is rather simple, but elegant in how it han-
dles the schema production. The “gqlRestWrapper” class
creates a GraphQL schema from the REST response. In a
way, this is similar to a game of telephone, wherein the
middle man takes the data being passed through, and
defines it into a usable schema for future interaction.

A few steps need to be taken. First, the npmpackagemust
be installed. Then, it needs to be imported. Finally, the
code function as stated above needs to be instantiated:

npm i graphql-rest-wrapper

var gqlRestWrapper = require(graphql-rest-wrapper)

new gqlRestWrapped([apiEndpoint], [variableOptions])

Then, middleware, or the interpreter in the telephone
game, needs to be attached to the route proper:

app.use([ROUTE], wrapper.expressMiddleware())

And finally, an HTTP GET/POST request can be made:

How to Wrap a REST API in GraphQL 29

fetch("http://localhost:9090/graphql",

{

headers: {

'Accept': 'application/json',

'Content-Type': 'application/json'

},

method: "POST",

body: "{'query': 'query { MyRestAPI { id, name \

} }'}"

})

.then(function (res) {

console.log(res);

})

The benefit of this style of wrapping is that it’s entirely
automated when properly organized. Whereas the first
process is entirely by hand, the second process is entirely
handled by an automatic and effective system. This lends
itself to problems that the hand-codedmethodmisses, of
course—principally, the fact thatmore complex code can
be missed or result in broken schemas.

To Wrap or Not to Wrap

Of course, this begs the question — should we really
be wrapping a RESTful API in GraphQL in the first
place? This assumes that the API in question is being
left in REST for the sole purpose that development of a
GraphQL compliant endpoint over a series of hundreds
of use cases would be an unworthy time sink.

That may not be true, however, when one considers the
lengths to which a provider must go in order to get what
they want out of their API. It may simply be more useful

How to Wrap a REST API in GraphQL 30

to code a GraphQL compliant series of endpoints rather
than try to wrap an API in a new skin.

This isn’t an all or nothing proposition, either. At the
Nordic APIs 2016 Platform Summit, Zane Claes spoke on
themovement from an internal, legacy, monolithic API, to
a more consistent group of API functionalities that served
data given specific devices, specific use cases, and specific
requirements.

It is entirely possible to use a legacy API for a time, and
slowly migrate to a GraphQL compliant API, rather than
wrapping an existing API as a “stop gap”. What we’re
talking about here is the difference between a band-aid
and a full-blownhip replacement— the extent of difficulty
may not be known until it’s actually attempted.

Conclusion: Wrap or Recode

Thankfully, the methodology of wrapping an existing API
comes down to how complicated the situation is. For
most API providers, a simple wrapping as stated above
would work, with the automated solution being entirely
acceptable.

For others, however, especially APIs that are simplymono-
lithic, the process of re-coding an API to be GraphQL
compliant is a more effective choice.

https://www.youtube.com/watch?v=qqv3s_c_5Jc
http://nordicapis.com/balancing-complexity-and-simplicity-in-api-design/

Best Practices for A Healthy
GraphQL Implementation

We’ve discussed GraphQL at length previously – and
while the discussions on how GraphQL works are obvi-
ously very powerful, we’ve yet to dive into some of the
best practices that should be adopted when developing
a GraphQL-centric API.

Today, we’re going to do exactly that. We’re going to
discuss the best practices for healthyGraphQL implemen-
tation, and describe why these practices are so advised.
By properly integrating these best practices as a matter
of course, your GraphQL-driven implementation and its
associated API structure can be more powerful, efficient,
and practical.

Best Practices for A Healthy GraphQL Implementation 32

Dogma vs Practices

Before we dive too heavily into this, it must be said —
these are suggested best practices, not absolute dogma.
While the majority of the practices herein are applicable
to most API installation, use case, and design, there are
some situations in which your API design or application
will not work well with some aspects of GraphQL, while
requiring other aspects of it.

In such cases, these best practices should be considered
a guideline, not a dogmatic instruction on how GraphQL
should be implemented.

URIs and Routes

While GraphQL is fundamentally RESTful, it does drop
some elements that have become core to RESTful de-
sign, such as resources. Wherein most REST APIs use re-
sources as a basic conceptualization for how data is pro-
cessed and returned, GraphQL eschews this and instead
depends on entities as defined by an entity graph. This
entity graph drives all traffic to a single URL or endpoint,
which is the forward facing entrance into the system.

Accordingly, URIs and routes should all lead back to a
single endpoint — this is the fundamental use case of
GraphQL, and is principle in its functionality.

Endpoint Collation and HTTP

By its nature, GraphQL serves verb requests over a single
endpoint in HTTP. This aspect of GraphQL is fundamental
to its design and approach towards endpoint collation

http://nordicapis.com/is-graphql-the-end-of-rest-style-apis/

Best Practices for A Healthy GraphQL Implementation 33

— as such, using a methodology other than a collated
endpoint in HTTP is locking a lot of functionality away.

In classic REST format, resources are exposed via a suite
of URLs, and each URL has a specified endpoint that is
tied into as part of the formatted request. While GraphQL
can certainly co-exist with this kind of setup, having such
a collection of resources behind URIs defies the purpose
of GraphQL implementation in the first place.

Accordingly, if youneed to adopt such apractice of hybrid
linking (aka a single collated point and then a group of
URLs representing individual resources), it would be ad-
visable to look into your design, schema, and format, and
address whether or not this is actually intended before
proceeding with such a system in GraphQL.

API Versioning

GraphQL is a schema, and as such, there’s nothing stop-
ping your API from versioning however it desires. That
being said, GraphQL has stated a strong avoidance of
versioning from a philosophical standpoint. GraphQL’s
stated viewpoint is as follows:

“Why do most APIs version? When there’s lim-
ited control over the data that’s returned from
an API endpoint, any change can be consid-
ered a breaking change, and breaking changes
require a new version. If adding new features
to an API requires a new version, then a trade-
off emerges between releasing often and hav-
ing many incremental versions versus the un-
derstandability andmaintainability of the API.”

Best Practices for A Healthy GraphQL Implementation 34

Accordingly, GraphQL takes the view that, since the so-
lution only returns explicitly requested data, there’s no
such thing as a “breaking change” in properly designed
GraphQL APIs. This is a definite shift from versioned API
to versionless, and is part of the design ethos of GraphQL
itself.

That’s not to say of course that versioning needs to be
an all or nothing practice. It’s very easy to simply version
by documenting changes and referring to the API by a
stated version number – this is much more an internal
organizational consideration, though, and as thus falls
outside of the common definition of true versioning. As
such, it’s better to call this a revision process rather than
a versioning process.

Nullability and Default Typing

APIs typically handle nullability in two steps: with a “null”
common type, and then a “nullable” version of that type,
specifically to separate the two types from one another
while allowing for nullification by specific declaration of
said type. This is all well and good, and in fact is a good
practice in and of itself, but because of how GraphQL is
structured and defined, this actually does not work within
the schema.

Accordingly, the best practice for nullification in GraphQL
is to remember that this null type is in fact a default setting
for every single field. This was integrated into GraphQL
as a methodology for managing failures from a variety of
internal and external causes, and as such, works well for
its intended purposes.

As a corollary to this, keep in mind that if a non-null value
is required, it can be set as a non-null type — regard-

http://nordicapis.com/continuous-versioning-strategy-for-internal-apis/

Best Practices for A Healthy GraphQL Implementation 35

less, it’s important to remember this default nullability
approach when addressing issues in the return stage of
data retrieval.

Pagination

Pagination in GraphQL is almost entirely the purview
of the developer. GraphQL allows for listed values as a
return, and as those listed values grow in length, how they
are returned is dictated by the strictures created by the
API owner themselves.

GraphQL allows for a pattern known as “Connections.”
This element of GraphQL allows for not only discovering
information about specific related items, but about the
relationships themselves. Adopting Collections is a best
practice, as it ties into other GraphQL suites and tools
like Relay, which can automatically support client-side
pagination in that common format.

JSON and GZIP Dependency

GraphQL is designed to respond to requests using JSON.
Despite this, it’s not expressly required in the specifica-
tion, and in fact GraphQL can work with a variety of re-
sponse types. That being said, it’s a best practice to adopt
JSON due to its text-centric organization, as GraphQL is
designed expressly to work with high-ratio GZIP compres-
sion.

Interestingly, GraphQL is designed with the syntax of
JSON in mind, and as such, it is a good idea to keep
this syntax consistent through both design and response.
Likewise, GraphQL suggests that clients respond with the
following appended in the header:

http://graphql.org/learn/pagination/

Best Practices for A Healthy GraphQL Implementation 36

Accept-Encoding: gzip

This will allow for even further compression of the re-
sponse data, and should result in lower overhead and
greater network performance. You don’t necessarily have
to adopt JSON, especially if you are adopting GraphQL
after your API has already been designed and given a
specified output format, but failure to adopt JSON can
result in decreased efficiency and confusion amongst
the user base when comparing output with the code that
generates said output.

Batching to Address Chattiness

GraphQL is, by default, extremely chatty. This is simply
due to how GraphQL is formed, how the data is collected
and returned, and how the server address requests. This
chattiness can be a hindrance, especially when doing
large scale data requests from a database.

Under GraphQL, the solution is to simply batch these
requests over a given period of time, collating them, and
then submitting themultiple requests as a single, collated
request to the system in question.

This in turn eliminates much of the chattiness, as you
are no longer issuing multiple packed, collated requests
to multiple elements of a GraphQL enabled server —
instead, you are bundling bundles of requests, resulting
in a passive GraphQL into GraphQL solution that creates
a relatively “quiet” system for the amount of data that is
being requested.

This does not have to be enabled, of course, and for
smaller projects, it might make sense not to do so, so
that issues in requesting can be identified and singled out.

Best Practices for A Healthy GraphQL Implementation 37

That being said, when handling any substantial amount of
data, adopting batching is probably a good idea.

GraphQL is designed in a way that allows you to write
clean code on the server, where every field on every type
has a focused single-purpose function for resolving that
value. However without additional consideration, a naive
GraphQL service could be very “chatty” or repeatedly load
data from your databases.

Of note: GraphQL suggests that some of this
batching can be done using GraphQL tools
such as DataLoader. While this is absolutely
an acceptable method, adopting batching in-
ternally as part of your code will be more
powerful than any third party tool can ever
be, and if needed, should very much be im-
plemented as part of the base architecture.

Disabling GraphiQL in Production Environments

GraphiQL is a big selling point formanyGraphQLadoptees,
but even though it’s extremely powerful, it should be dis-
abled in production. This recommendation comes from
the official GraphQL documentation. GraphiQL should be
disabled due to various vulnerabilities that could inadver-
tently expose internal API functionality by exploring the
primary forward-facing endpoint. Enabling GraphiQL es-
sentially negates many of the reasons you are integrating
GraphQL in the first place.

https://github.com/facebook/dataloader
http://nordicapis.com/10-graphql-consoles-in-action/
http://graphql.org/learn/serving-over-http/

Best Practices for A Healthy GraphQL Implementation 38

GraphQL Authorization Practices

GraphQL specifically notes in its specification documen-
tation that all authorization must be done in the busi-
ness logic layer. This is specified due to how GraphQL
functions. Using authorization logic that checks for ele-
ments of the entry point validation process, such as “has
author ID” or “carries correct token” would mean that, for
every possible entry point, this logic would have to be
duplicated, which leads to incredibly complex implemen-
tations for even small amounts of authorization controls.

Accordingly, GraphQL dictates that this should be done at
the business logic layer so that the authorization controls
only need to be specified once for the entirety of that
specific class. GraphQL notes that this is fundamentally
considered having a “single source of truth for authoriza-
tion.”

GraphQL Pipeline Model

As part of this approach towards Authorization, GraphQL
advises that all authentication middleware should come
before the GraphQL implementation to avoid the same
issues with authentication. Any filters, plugins, extensions,
etc. should all be placed before GraphQL to allow session
and user information in its final form for granular and
singular control.

Conclusion

As stated at the beginning of this piece, we’ve aimed to
share advice rather than dogma when we discuss these

http://graphql.org/learn/thinking-in-graphs/#business-logic-layer
http://graphql.org/learn/thinking-in-graphs/#business-logic-layer

Best Practices for A Healthy GraphQL Implementation 39

best practices. The best practice of all is to adopt so-
lutions that fit with your specific use case. Consider
these GraphQL best practices as guidelines rather than
set-in-stone rules, but for the most part, adopting these
best practices and implementing GraphQL as designed
will lead to a more powerful, leaner, and more efficient
system. Failure to adhere can result in many of the ben-
efits to GraphQL disappearing as quickly as your number
of endpoints.

http://nordicapis.com/5-potential-benefits-integrating-graphql/
http://nordicapis.com/5-potential-benefits-integrating-graphql/

Security Concerns to
Consider Before

Implementing GraphQL

GraphQL is a very powerful query language that does
a great many things right. When implemented properly,
GraphQL offers an extremely elegant methodology for
data retrieval,more backend stability, and increasedquery
efficiency.

The key here though is that simple phrase— “when imple-
mented properly”. GraphQL has had somewhat of a gold
rush adoption, with smaller developers responding to the
media hype and big name early adopters with their own
implementations. The problem is, many people aren’t
considering what adopting GraphQL actually means for
their system, and what security implications come with
this adoption.

Security Concerns to Consider Before Implementing GraphQL 41

GraphQL is a paradigm shift in many ways — and with
that, security concerns have changed. While some secu-
rity concerns have gone away, replaced by architectural
differences and nuances, other concerns have been am-
plified.

In this piece, we’re going to talk about those issues, high-
lighting some general concerns in regards to security
in an API system supporting GraphQL. While GraphQL
itself is not the primary driver of these concerns, these
issues should be addressed within the greater frame of a
GraphQL system, and all of the implications that suggests.

GraphQL - A Summary

Quickly, let’s summarize what GraphQL is, and how it
does what it does. Simply put, GraphQL is an application
layer query language designed to interpret a string from
a server or client, and return that data to the requesting
client in the form that they request.

GraphQL was developed by Facebook as a means to
transition away from HTML5 applications on mobile to-
wards robust, native applications. This was facilitated by
allowing easier backend queries through the unification
of multiple interior endpoints to a single forward facing
endpoint.

With that in mind, what are some concerns in regards to
security and best practices in terms of GraphQL?

Security Concerns to Consider Before Implementing GraphQL 42

Implied Documentation vs. Actual
Documentation

Another serious concern when implementing GraphQL is
howdocumentation is handledbetween versions. GraphQL
does not have versioning support in the same way other
systems do. That’s not to say that you can’t version in
GraphQL, but simply that by design, GraphQL is designed
to API evolution without version control being required.

While this is certainly a fair approach, there are a good
number of developers who depend on versioning to com-
municate changes in field values, endpoints, and decla-
rations. While this is not good practice, that doesn’t stop
it from being relatively common — and unfortunately,
when GraphQL is brought into the mix, the issue only
becomes worse.

Let’s say an API changes a fundamental endpoint or in-
ternal construct. In a traditional API, this change would
be documented as a version change, with in-built docu-
mentation as such. InGraphQL implementations, this isn’t
the case, and so many developers might learn about this
deprecated endpoint or construct by attempting to use it,
and being turned away.

So what’s the security issue here? The problem is that,
without proper documentation, you can very quickly run
into a situation where an endpoint is no longer valid, but
data is still being sent and requested from that endpoint.
This can result in collisions and unintended functionality.
More to the point, if your application is still attempting to
poll a non-existent GraphQL endpoint, an emulated end-
point from aman-in-the-middle attack could theoretically
step almost seamlessly into the data stream.

Security Concerns to Consider Before Implementing GraphQL 43

There aremany ways tomitigate this, and adopting a con-
tinuous versioning strategy is absolutely paramount as a
solution. That being said, this is much more a problem
with developer practices than GraphQL itself. That com-
ment aside, the issue dramaticallymagnified by GraphQL,
and should be considered prior to any GraphQL imple-
mentation.

Unified Failures

Perhaps the biggest issue with a GraphQL implementa-
tion is inherent in the approach itself. GraphQL has the
extremely powerful ability to unify multiple endpoints
into a single queryable point — this is the entire crux
of what makes GraphQL powerful. The problem here,
though, is in the fact that a single endpoint, even if it
connects to multiple internal endpoints, functions as a
single point to the consumer.

We often tend to think of APIs from an “interior to edge”
way — we think from the code base out to the consumer
experience. Typically, this is fine, as the consumer is a
single point accessing multiple endpoints, which then
call multiple functions, which might relay to even more
databases or resources.Whenwe’re talking aboutGraphQL,
however, we’re actually creating an “interior to edge to
interior” style system, in which the codebase narrows to
a single point or collection of single points, which then
expands to the user.

In a poorly defined GraphQL request from the consumer
(or, for that matter, a poorly formed GraphQL endpoint
defined by the developer), a single failure means a total
failure to access internal resources. If improperly ab-
stracted, documented, and specified, you’re essentially

http://nordicapis.com/continuous-versioning-strategy-for-internal-apis/

Security Concerns to Consider Before Implementing GraphQL 44

putting all your eggs in a basket.

Functionally speaking, this entire issue could be summed
up thusly: call failures equate to insecurity for the dev
consumer. Minimizing these failures is an entire industry
in and of itself, and poorly adopting GraphQL negates
much of the efforts developers have made to this end.

Data and Server Transaction Volumes

GraphQL has another fundamental problem related to its
foundational aspects—queries are often larger andmore
complex than in traditional REST APIs. In GraphQL, a sin-
gle request might combine multiple requests to multiple
endpoints, resulting in an unpredictable amount of data
for each request over time.

Consumers are in control of their requests — and in
some ways, this is dangerous. Not every provider is going
to have huge scalable infrastructure or cloud servers
on retainer, and thus not every provider is going to be
comfortable with the idea of allowing for variable content
requests based on the whim of a user.

There’s also the concern of limiting the actual request
in a reasonable way. Consumers aren’t always the most
judicious with their requests — sometimes, a consumer
may request more data than they really need, and over a
long time and large amount of requests, this adds up to
significant overhead that did not exist in a non-GraphQL
solution.

Security Concerns to Consider Before Implementing GraphQL 45

Information Hiding and Chattiness

Let’s get this out of the way first — neither GraphQL or
REST enforces any significant amount of data hiding. The
problem with GraphQL specifically comes when people
rush to adopt it, and instead of logically thinking out
the mapping of public endpoints to private models, they
simply map a 1:1 relationship.

While this is functional, it’s incredibly dangerous. The
entire point of GraphQL is to allow the client to request
the data the way that they want it to be requested —
but this also means that GraphQL enables data in a way
that may not be intended, and when 1:1 relationships
are established, you lose some very important control of
internal assets.

This is, just as with any REST API, entirely manageable
with proper GraphQL schema design. Third party clients
and APIs should be able to interact with your GraphQL
endpoint without knowing the internal workings of the
API.

GraphQL can be done in a way to have this be a limitation
of the endpoint, but this comeswith the threat of a rushed
adoption, possibly resulting in exposing much more than
was intended. Depending on how GraphQL is set up and
how queries are handled, the actual endpoints defined
can insist on “chattiness”, rather than allow it.

This isn’t just a matter of schema revelation, either. When
an endpoint unifies multiple internal endpoints and func-
tionalities, this endpoint can be improperly implemented
to retrieve farmore data thanwas ever intended. This has
some serious implications.

First, there is the server implication. If the data is being

Security Concerns to Consider Before Implementing GraphQL 46

retrieved first and then stripped of irrelevant data before
being transferred to the client, we’re being extremely
wasteful. Imagine if every single time you want to drive,
you had to burn an entire tank of petrol, regardless of
distance travelled.

In some cases, this would make sense — a two hundred
mile trip would easily eat through your tank, and possibly
more. For a short trip, this would be absolutely wasteful,
and over time, would lead to excessive wear and tear.

The same is true on the server side — limiting this chatti-
ness is incredibly important.

Then there is the aforementioned security internal expo-
sure issue. This has already been somewhat discussed,
but it bears repeating—allowing for unlimited access to a
variety of endpoints in a manipulatable way is the perfect
storm for penetration testing, and makes identifying the
structure and scheme of the backend trivial in many
cases.

Authorization and GraphQL

Another point of potential issue is improper implementa-
tion of authorization in GraphQL-dependent APIs. Again,
this is much less an issue with GraphQL itself, and more
an issue with adoption.

In GraphQL, authentication can be handled handled using
“query context”. The basic idea here is that the request
can be injected with arbitrary code that is then passed
through to the request, which allows very fine, granular
control of authorization by the developer proper. This
is a very secure system – it’s arguably much stronger

http://rmosolgo.github.io/blog/2015/08/04/authorization-in-graphql/

Security Concerns to Consider Before Implementing GraphQL 47

than other solutions when it comes to SQL injection and
Langsec issues.

The problem comes with developers not actually under-
standing that this is a possibility. Developersmight look at
their current authorization logic, decide they don’t want
to change anything fundamentally, and instead insert
this logic into the GraphQL layer itself rather than the
business logic layer.

This is fundamentally flawed, and is advised against in
the GraphQL specification itself. Placing this logic in the
GraphQL layer opens the security systemup to code injec-
tion, sniffing, and other attacks that could easily expose
the internal authorization structure, thereby rendering it
null.

Measured Optimism

This isn’t to say that GraphQL is a poor choice, or that you
should be wary of implementing it. Quite the opposite, in
fact—proper implementation of GraphQL is possibly one
of the best things that can be done for a large API with a
variety of data on the backend that must be delivered in
a sensible, consumer-controlled way.

What this is to say, though, is that our optimism should
be tempered. As with any new technology or implemen-
tation, we need to prove that the theoretical is provable in
the actual implementation. With somany potential issues
sprouting from improper implementation, it’s incredibly
important for developers to look at GraphQL in the frame
of “how do I make sure I do this right” rather than “move
fast and break things”.

https://mikewilliamson.wordpress.com/2016/09/15/graphql-and-security/
https://mikewilliamson.wordpress.com/2016/09/15/graphql-and-security/
http://graphql.org/learn/authorization/
http://mashable.com/2014/04/30/facebooks-new-mantra-move-fast-with-stability/#9qWj0izeTPqL
http://mashable.com/2014/04/30/facebooks-new-mantra-move-fast-with-stability/#9qWj0izeTPqL

Security Concerns to Consider Before Implementing GraphQL 48

We’re not alone in this advice for measured optimism,
either.

ThoughtWorks, a software company which delivers ver-
dicts to the industry on new technologies, advised that
developers should “assess” whether or not GraphQL is
the correct solution given their use case. API Evanelist Kin
Lane was likewise cautious, stating that during a conver-
sation in the API Evangelist Slack channe:

“the consensus seemed to be that GraphQL is
a way to avoid the hard work involved with
properly getting to know your API resources,
and it is just opening up a technical window
to the often messy backend of our database-
driven worlds.”

The simple fact is that, as with any solution, we need to
be cautious and ensure the following:

We are using GraphQL for an appropriate use, and not
adopting it in the “flavor of the week” mentality; Our
endpoints are well documented, with secondary paths in
the case of failure; We are properly hiding the internal
schema and structure of our server; Finally, we are limit-
ing the amount of interactions allowed to a “reasonable”
measure.

If andwhen these situations are validated, GraphQLmakes
for an amazing implementation.

https://www.thoughtworks.com/radar/languages-and-frameworks/graphql
http://apievangelist.com/2016/08/30/graphql-seems-like-we-do-not-want-to-do-the-hard-work-of-api-design/

7 Unique Benefits of Using
GraphQL in Microservices

We’ve talked about GraphQL at length previously, and for
very good reason – GraphQL is, in many ways, one of the
more powerful tools an API provider has in terms of pro-
viding singular endpoints to the consumer and controlling
data flow. While this value has been proven time over
time, however, it seems that some of themore salient and
special benefits of adopting GraphQL are often lost in the
conversation.

Today, we’re going to talk about these unique benefits,
and what they actually mean to a production API. Many
are familiar withmicroservices, so in this piece we’ll dis-
cover positive impactsGraphQLbrings amicroservices ar-
rangement, such as data owner separation, granular data
control, parallel execution, service caching, and more.

7 Unique Benefits of Using GraphQL in Microservices 50

Clearly Separated Data Owners

One of the main benefits of having everything behind a
single endpoint is that data can be routedmore effectively
than if each request had its own service. While this is the
often touted value of GraphQL, a reduction in complexity
and service creep, the resultant data structure also allows
data ownership to be extremely well defined, and clearly
delineated.

This is in large part because the request itself is pointed
towards a single endpoint, and that requestmust package
the expected data format and the resource owner desig-
nation, whether it be for a specific function or a specific
data type, is thus intrinsically tied to that request.

This is different from a typical REST API, in which the
request to each microservice might be requesting data
that the microservice endpoint doesn’t support or cannot
deliver, which would then be passed on to another end-
point, and so on. This ends up creating a web of requests
and passed communication, and to the average viewer,
who actually owns the requested resource is thus hard to
decipher.

Data Load Control Granularity

Another benefit of adopting GraphQL is the fact that you
can fundamentally assert greater control over the data
loading process. Because the process for data loaders
goes into its own endpoint, you can either honor the re-
quest partially, fully, or with caveats, and thereby control
in an extremely granular way how data is transferred.

In many ways, this granularity is what REST has tried to

7 Unique Benefits of Using GraphQL in Microservices 51

achieve with some degree of success when implementing
specific schemas and request forms. That being said,
GraphQL integrates this as a specific structural element of
how it works, and as such, does so much more effectively
than most other solutions.

Parallel Execution

Because a single GraphQL request can be composed of
many requested resources, and because GraphQL can
choose dynamically when, how, and to what extent a
response is issued to such a request bundle, GraphQL
can leverage a sort of parallel execution for resource
requests. What this functionally results in is the ability for
GraphQL requests to partially fail, but for the response
to deliver more useful data to more requests in a single
issuance.

This ultimately has the benefit of allowing a single re-
quest, even when partially failed, to serve the place of
what would traditionally be multiple requests to multiple
services over multiple servers. This also allows a single
request to use a relatively more restrained amount of
processor time and power to deliver the same amount
of information that would otherwise be required of those
multiple requests, thereby delivering greater power with
less requirements.

“Instead of having six sequential calls, what [a
parallel dataloader] will do is give you all six
IDs in one go, so you can make one request
instead of six. This will make your downstream
databases and APIs way happier – no one will

7 Unique Benefits of Using GraphQL in Microservices 52

be on fire, no one getting paid at 2 am in the
morning.” -Tomer Elmalem

Request Budgeting

In GraphQL, requests can be given a “maximumexecution
time”, and this value can then be used to budget requests.
Each request is given a value, and from that, the server
budget is calculated and calls are prioritized. As an ex-
ample, let’s assume our server has a total budget of 2
seconds, and look at a sample batch of requests.

We receive four requests – one is a single second, two
of them half a second, and the final request a full two
seconds. When budgeting our requests, the GraphQL
server can accept the first three requests, and either delay
or refuse the last request, as it would exceed the allotted
time that the server has open for requests of its nature.

What this in effect does is allow the server to prioritize
requests and grant them where appropriate, which ends
up reducing timed out requests in the long run. Addition-
ally, this system can return information to the requester
– such as would be the case with a 6 second request, for
instance – that can then inform the user to break their
requests into smaller pieces or wait for a low-budget time
to make the request.

“[As an example] we set the maximum bud-
get to one second. Some sleep function takes
about half a second, andwe’ve got about half a
second in budget remaining. […] Our budget is
one second, but we have some function that
takes a second and a half, so we’re actually

7 Unique Benefits of Using GraphQL in Microservices 53

negative 500 milliseconds in terms of budget
– so everything downstream fails. If this hap-
pens on the first service call, then we can skip
executing the next 6 calls [which avoids] a lot of
wasted processing power when requests are
timing out.”

Powerful Query Planning

Combining two of thesemajor benefits – parallel requests
and budgeting – allows us tomore effectively plan out our
query schedules. By being able to send some queries to
an endpoint, and have others execute in parallel at a later
time per their weight and processor demand, you can
effectively plan out those queries over a relatively broad
set of criteria and per the time allotted.

While this seems simple, the ability to plan out queries
over time and address per priority is one of the elements
of GraphQL that is so incredibly powerful.

Service Caching

GraphQL utilizes Object Identifiers for one of the biggest
savers in terms of server processing demands – caching.
By being able to cache resource for services which re-
quest them, GraphQL can essentially build a cache of
often-requested data and save processor time and effort.

According to Elmalen, this is rather easy to implement, in
fact – GraphQL documentation suggests utilizing a system
of globally unique IDs in order to note the resources being
cached, thereby providing them with minimal processing
demand.

7 Unique Benefits of Using GraphQL in Microservices 54

“Since you’re handling a lot of network requests,
you don’t want to have to keep making those
requests over and over and over again if you’re
seeing the same data frequently.”

Easy Failure Handling and Retries

GraphQL is unique, in that, in a normal connection and
request cycle, there is no real “fail” or “succeed” – every-
thing is either succeed or partially fail. GraphQL requests
can partially succeed, returning only elements of the data
requested or specific datasets as allowed, and this control
can be very granular.

As a result of this, a resolver to a request can be more
than “all or nothing”, partially resolving as a single resolver
delivers content, and the rest of the request is dumped.
This means that GraphQL is in a position to handle failure
rather gracefully, notifying the requester of the failure
but returning useful, actionable data alongside the noted
failure and what caused said failure.

As part of this, GraphQL requests can be parsed to find
the null fields returning in a failed request, and note
what the error actually was. If the error was a simple
misconfiguration or poorly formed call, it can be made in
a better format upon instruction from the GraphQL layer
itself – if the data is prohibited or absent, the requester
can also ascertain this. This means that automatic retries
are possible, as are granular levels of call termination and
auto-failure handling.

“In GraphQL we have a lot of flexibility with
how the resolverswork.Query executiondoesn’t

7 Unique Benefits of Using GraphQL in Microservices 55

have to be all or nothing like it might be in a
REST API, where if one endpoint call throws an
exception everythingmight blow up. Resolvers
execute independently of everything else, so
one resolver can fail but the entire query can
still resolve.”

Case Study of Microservices In Action:
How GraphQL Benefits Yelp

To see what GraphQL is so useful in a microservices
approach, we can look at Tomer’s argument in favor of
integration at Yelp. Yelp is foundationally a business that
ties to additional businesses, and as such, utilizes a public
API rather heavily. Their public API is supposed to give
clients data connections by which the resources can be
collected, reviewed, and collated.

In their original Yelp API, this external demand for data
causes a significant problem. The API was too large, had
too many endpoints, and as more data was requested
from outside partners, the API was expanded either with
more bloated endpoints or with additional endpoints to
feed out the data. This resulted in an extremely large
solution that was hard to maintain, hard to iterate upon,
and generally less agile and was desired.

As a solution, Yelp began to implement a new design
paradigm in GraphQL. Their chief reasoning was the fact
that, for their outside businesses, those partners wanted
to make a single request for the data they needed, and
nothingmore. GraphQL fit this requirement perfectly, as a
single endpoint could now serve a multitude of resources
in a defined and predictable way. More important, only

7 Unique Benefits of Using GraphQL in Microservices 56

a single request would have to be made, as that re-
quest could be formed in the way that the data requester
needed the data and it could be served based upon the
agreed data served by the provider.

This process and choice really encapsulates the purpose
of GraphQL in a microservices architecture. While it is
true that Yelp could have simply added more endpoints,
created more microservices, expanded the resource han-
dling, and progressed the bloat process of their API. All
this would have done, however, is increased complexity,
bloat, and the cost to maintain the API.

By adopting GraphQL, however, their microservice-ori-
ented design functions more agile, more responsively,
and, perhaps most importantly, more adherent to the
design requirement at hand – a single request delivering
the data as requested.

Final Thoughts

It should be noted that GraphQL is extremely powerful,
and that the benefits at hand are especially powerful for
most microservice structures – though not all. In some
cases, especially in cases in which the data does not
change, new endpoints are not added, and additional
functions are not required, GraphQL may add additional
unwarranted complexity.

GraphQL has often been sold as a perfect solution for
every problem, but the reality is that it meets one require-
ment better thanmost other, and if that’s not part of your
requirements, it may not be the best solution for your
implementation.

For situations like that faced by Yelp, however, GraphQL

7 Unique Benefits of Using GraphQL in Microservices 57

fits perfectly and solves the major issues at hand. For
this reason alone, should developers find themselves in
a microservice architecture and requiring a greater flex-
ibility in data delivery and structuring, GraphQL should
absolutely be a top consideration.

Comparing GraphQL With
Other Methods to Tether

API Calls

From the very beginning, developers have sought tomake
their systems runmore efficiently, delivering greater amounts
of data and functionality in a slimmer,moreusefulmethod-
ology. Increased efficiency usually equates tomoney saved,
so there is a very real drive behind the constant need for
condensing and code tweaking.

Though there are a variety of approaches taken towards
this end, one method remains a popular suggestion —
tethering API calls. A simple process in theory becomes

Comparing GraphQL With Other Methods to Tether API Calls 59

one more complex in application — with interesting re-
sults in certain use cases.

In this chapter, we’ll discuss some general methods used
to combine API calls, and how to implement them. We’ll
take a look at the various strengths and weaknesses of
this approach, as well as highlight some use cases that
would benefit from its implementation. We’ll also com-
pare it to a chief alternative competitor, GraphQL, and
examine whether or not one comes out on top.

What Do We Mean By Tethering API
Calls?

Tethering is the act of initiating multiple data requests
to various parameters, APIs, or microservices, in a single
call. The idea is that by combining these requests, your
platform gains efficiency and speed. However, there are
some caveats that we’ll discuss shortly.

One way to consider tethering is to think about how
mail is handled via the hub-and-spoke model. When you
write a letter, this letter is dropped off in a post box. The
postman then collects these letters and parcels, binding
them together for processing. At the processing shop,
these bundles from everywhere in your city are bundled
together into even larger crates depending on their des-
tination and purpose.

Tethering works much the same. The big benefit of this
method arises in that postal metaphor — the joining of
unrelated resources within a single action.

Let’s say you have a collection of APIs in a microservice
architecture, each manipulating data across a suite of

Comparing GraphQL With Other Methods to Tether API Calls 60

applications. While there is no need for a music discov-
ery application to access the contacts on an iOS device
regularly, a new update has enabled a significant social
networking service on the discovery application.

Luckily, your users also largely use another one of your
products, a video sharing app akin to Vine, with users
collated from their contact list. While pulling straight from
the contact list and comparing to accounts might get you
some users, you are likely to have a much greater chance
of adding new users to your new social platform that
already actively use your suite.

With linking API calls, a request can be done to the video
sharing application API to issue a friend request on behalf
of the user, while avoiding sending new requests to users
who are not represented on any of your suite’s applica-
tions.

In this case, what would typically take several calls — a “is
this user on the video app?” call, a “are they on the user’s
contact list?” call, and finally a “friend request sent!” call —
can be condensed to a singular call.

Benefits of Tethering API Calls

There’s quite a number of benefits to this approach in par-
ticular. First and foremost is speed — when an API only
has to issue a single call that is handled by the relational
processing between microservice APIs, calls are returned
quicker and with greater accuracy. Light can only travel
so fast, and thus processing is fundamentally limited —
reducing the number of calls that must be made reduces
latency, making chaining a powerful way to optimize APIs
for mobile apps.

http://nordicapis.com/optimizing-apis-for-mobile-apps/
http://nordicapis.com/optimizing-apis-for-mobile-apps/

Comparing GraphQL With Other Methods to Tether API Calls 61

In the same vein, chaining is much more efficient than
traditional calls. By using the connection between APIs
rather than creating a singular “filter” or “intersection”
style API that attempts to combine all calls after they’re
made, you can perform the same function while not cre-
ating bloat inside your ecosystem. Chaining is the world’s
greatest game of telephone — you ask your neighbor for
sugar, milk, and eggs, and they in turn ask their neighbor
for what they don’t have, and so on, until you get what you
need—without this, you’d have to walk to each neighbor
individually.

There is of course an implicit increase in security for this
function as well. While it seems counter-intuitive, what
with more resources being accessed with only a single
call, the end result is a reduction in attack vector for the
simple reason of having less calls.If you had 100 armored
vans transporting money through a high-crime area, or a
single armored van transporting money, you would have
greater security through reduction in trips over time, even
if the actual security of the single result is the same.

This mode of combined communication also has the ben-
efit of making the API more friendly to automation. By
moving the logic of the call to a higher level, and opening
the call itself to shared resources, the ultimate result is
an easier to deploy,more automatic, less code-heavy, and
faster solution.

What this all means is that, as long as it’s properly im-
plemented, both the provider and consumer can have a
much better, streamlined experience. While consumers
benefit from combined calls and more simple call struc-
tures for large amounts of data, the provider has a much
reduced amount of documentation and data bandwidth
implications.

Comparing GraphQL With Other Methods to Tether API Calls 62

Drawbacks of Tethering API Calls

That’s not to say, however, that chaining is perfect— there
are some caveats to consider before implementing this
methodology.

The first and most dramatic possible drawback is the
fact that chaining lends itself to circular logic, if you’re
not careful. Because multiple resources are being called,
and many of these resources can be augmented by calls,
it is possible to call a chain that results in an infinitely
changing result.

These unexpected results can be negated, of course, and
much of the drawback of circular references can be con-
verted into a net benefit with proper redirects and inter-
ceptors, but the threat is very real, and easy to fall into if
not mitigated from the onset.

Another is lack of support. Unfortunately, chaining is
simply not supported by common and publically used
schemas and API patterns. Because of this facet, where
communication logic and business logic are separate and
architecturally limited, anAPImust be redesigned atworse,
or augmentedwith abstraction layers at best, which can in
turn negate many of the benefits inherent to the system.

Adding complexity to the call can mean a greater barrier
to users and additional developers. With this also comes
the risk of easier denial of service attacks and other
such attacks that can use the increased ability to make
combined calls to break the system.

This can be negated widely by simply enabling rate limit-
ing, but all in all, it may be a negative that makes integra-
tion not worth it.

http://nordicapis.com/stemming-the-flood-how-to-rate-limit-an-api/
http://nordicapis.com/stemming-the-flood-how-to-rate-limit-an-api/

Comparing GraphQL With Other Methods to Tether API Calls 63

Use Cases

Chaining is a preferred methodology in some limited
circumstances. Since the circumstances themselves are
often specific to the application, we must speak broadly
as to the qualities that make API tethering a good choice.

• Unrelated Databases: When multiple databases
are present with typically unrelated data, and data
must be pulled from both to form a relation, com-
bining API calls is a good idea. While it would be
best in some cases to create a relational link be-
tween these databases, the problem arises in the
frequency— if the data is not expected to constantly
be referenced in a concrete way, API Chaining can
get around this problem with relatively low over-
head.

• Unexpected Data Requirements: When the spe-
cific requirements for a function or the given evolu-
tion of a product are unknown, tethering can cover
this facet. Because not every facet of evolution in
an API can be predicted, developers often suggest
microservices as a solution. This is fine, but it limits
the choice of development tracks into the realm of
what already exists and forces concrete develop-
ment relations. Tethering calls can eschew this.

• High Volume Calls: When high volume calls are the
name of the game, chaining can reduce the total
impact of the simple volumetric issues by combining
calls into single returns. This also has the addedben-
efit of more secure communications, as the number
of calls is reduced. While this could be touted as
a feature, unfortunately, reception of tethering has
not been as widespread as before, meaning that

Comparing GraphQL With Other Methods to Tether API Calls 64

security in the API space doesn’t always flow over
into chained requests. This can be negated with
training, however.

Alternatives — GraphQL

This isn’t the only solution to the problemof such complex
calls, of course. GraphQL can be used to replicate much
of the effect gained alternative strategies, albeit via a
different methodology. Because data can be defined via
the GraphQL query, multiple datapoints can be collated
into a single database or collection and then returned in
the requested format for easier parsing.

For example, this call queries multiple endpoints through
a singular call:

{

latestPost {

_id,

title,

content,

author {

name

},

comments {

content,

author {

name

}

}

}

}

Comparing GraphQL With Other Methods to Tether API Calls 65

This is done via a completely differentmethodology, though,
so some of the benefits of tethering — specifically the
reduction in call volume and processing—are fundamen-
tally lost. The architecture itself is simply being masked
with GraphQL — none of the processing is changed on a
base level, and the traditionally poor processing architec-
ture marches on unbeknownst to the user.

While multiple endpoints are brought into a single end-
point, the result is still functionally the same — multiple
calls are still called. The only difference is in the percep-
tion of the returned data and latency in returning that
date.

There is a big benefit in integrating GraphQL, however, in
the fact that the data can be pre-formed and pre-deter-
mined by the requesting entity. Whereas tethering simply
returns the data for interpretation, GraphQL specifically
issues a schema for data display, thus controlling the
output more effectively.

Conclusions

API tethering is very powerful, but quite problematicwhen
not properly implemented. Because of this, it’s often said
that using tethering is outside of best practices, both due
to lack of training and the avoidance to call through a
proxy loopback. However, it is within “best practices” for
an untrained pilot to not fly a 747— that doesn’tmean the
747 isn’t useful to thosewho knowhow to utilize it. It’s also
less efficient to transport the Space Shuttle inside a 747—
but in some use cases, it’s had to be done. Neither argu-
ment is really one against implementation — they’re best
categorized as perhaps “too strong” precautions against
poor implementation.

Comparing GraphQL With Other Methods to Tether API Calls 66

Though many of the criticisms against API tethering are
valid, they can be negated by proper implementation. The
choice to combine API calls will depend entirely on your
circumstance and the needs to the application itself. In
the right situation, with the right user base, API tethering
is incredibly powerful.

The Power of Relay: The
Entry Point to GraphQL

In many ways, GraphQL is a futuristic approach to dealing
with all the headaches surrounding high-data transfer,
large-volume relational content. As more is written about
the technology and as its implementation is discussed, it
goes without saying that related components are becom-
ing increasingly more interesting as well.

One of these components, Relay, often falls to the way-
side in the conversation — and that’s a shame, given that
Relay is incredibly powerful, useful, and interesting, given
the right use cases.

Accordingly, this piece will focus on Relay as an extension
of GraphQL per Facebook’s stated development guide-
lines and documentation. We’ll discuss how Relay does
what it does, what specifically makes it special, and why

https://facebook.github.io/relay/
https://facebook.github.io/relay/

The Power of Relay: The Entry Point to GraphQL 68

pairing Relay with some — but not all — GraphQL imple-
mentations is a good idea.

What’s the Difference Between
GraphQL and Relay?

While GraphQL and Relay are often pushed in the same
sentence (and are treated like a package by Facebook
and many other advocates), they are actually two very
different parts of a greater mechanism.

GraphQL is, fundamentally, a way to model and expose
data in the native application. That is to say that GraphQL
is the methodology by which all of its extended function-
ality is prepared for fetching and interaction.

Relay, on the other hand, is the client-side data-fetch-
ing solution that ties into this stated model to render
data efficiently for the end user. It ties into the GraphQL
schema, it uses the GraphQL schema, and with further
server-side additions, it augments GraphQL schema, but
to say they’re one in the same is like saying “gasoline” and
“tires” are one in the same because they’re both used to
power a car.

To further drive home the point, GraphQL is able to be

The Power of Relay: The Entry Point to GraphQL 69

used entirely independently of Relay, while Relay depends
on GraphQL (or, at least, GraphQL-like schemas) to func-
tion. GraphQL can be used with any fetching technology
that is designed to handle the query in question (which is
easily done with most modern solutions).

The GraphQL specification describes how Relay makes
three core assumptions on what a GraphQL server pro-
vides:

1. A mechanism for refetching an object.
2. A description of how to page through connections.
3. Structure aroundmutations tomake thempredictable.

What is Relay?

So what exactly is Relay? At its most base level, Relay is
a JavaScript framework crafted to build React.js services.
It was designed as a component to Facebook’s GraphQL,
expressly crafted to handle high data throughput and
output the requested data in a dynamically stated way.

A big power point behind Relay is how it handles this data
fetching. Relay handles data through declarative state-
ments in GraphQL, composing the data query into effi-
cient batcheswhile keeping to the stated data structuring.
Because of this, Relay is very fast, very efficient, and
more important, extensible to the application demands
in a dynamic manner.

That’s not the only thing that makes Relay users sing its
praises, of course. Colocation is present in Relay, allow-
ing for aggregate queries and limited fetching.Mutations
are supported widely as well, and provides optimistic
updates to create a more seamless user experience by

The Power of Relay: The Entry Point to GraphQL 70

presenting data as a positive throughput even while the
server is still managing the request.

Essentially, Relay does what it does well, in very specific
applications, and more efficiently than other solutions.

The Good

So with all this in mind, why use Relay at all? If GraphQL
does so much, and operates outside of Relay, why do we
need it? Well, GraphQL isn’t perfect. It lacks the ability
to poll and reactively update, and it has some built-in
inefficiencies that make the system less than optimum.

Relay, on the other hand, fixes many of these issues,
extending its usefulness into new heights. With Relay,
data requirements are expressly stated and fetchedmuch
more efficiently than just standard fetching in GraphQL.
This increase in efficiency stems largely from the data
caching built into Relay, allowing existing data to be
reused instead of forcing a new fetch for each round trip
on the server.

Part of this boost in efficiency comes from aggregation
and colocation of queries into single, streamlined data re-
quests. While this has a huge benefit in terms of logic, the
main benefit is in the network traffic and pure volumetric
reduction.

The improvements don’t stop there. Relay offers efficient
mutations, and provides for cataloguing, caching, and
altering these mutations after the fact, including dynamic
column/value alteration.

A huge benefit here is the support for optimistic up-
dates. Optimistic updates are an interesting methodol-
ogy of client mutations wherein the client simulates the

The Power of Relay: The Entry Point to GraphQL 71

mutation as the server commits themutation to the back-
end, allowing the user to interact with the changes they
made and simulate their experience without waiting for
the server to commit.

As part of the support for optimistic updating, Relay pro-
vides a system for Relay mutation updates, status re-
porting, and rollback, which allows for more seamless
management of client and server states. Relay also sup-
ports rich pagination, easing the heavy burden of large
data returns andmaking them easier to consume, further
improving user experience.

We can see the effectiveness of Relay by looking at its
implementation. Messaging application Drift is designed
to tie customers and providers together using real-time
messaging natively on the provider’s website. Because of
previous experiences with multiple endpoints and large
data requests, the team at Drift knew that speed would
be affected — and dramatically.

When they started a new company, Drift, and saw them-
selves falling into the same hole they previously did, they
made the decision to fix the issue early, and integrated
GraphQL into their services. When faced with the follow-
ing complex data set:

“Customer attributes come from a single re-
quest that returns name, title, location, time
zone and avatar. But in order to display the
account owner, we’ll need to query the organi-
zation’s team endpoint to fetch that name and
avatar. To render those colorful tags, we need
to fetch the tag definitions from another end-
point. The list of all contact avatars requires a
search for all customers in the same company

https://medium.com/drift-engineering/choosing-graphql-to-build-drifts-messaging-platform-8b4310facbc1#.a80o6kykd

The Power of Relay: The Entry Point to GraphQL 72

against our ElasticSearch backend. The chat
count and last contact requires multiple calls
to our Conversation API and one last call to
fetch that user’s online status or last active
timestamp.”

They coded the following data query:

{

user(id:1) {

name

title

avatarUrl

timezone

locale

lastSeenOnline

email

phone

Location

accountOwner {

name

avatarUrl

}

tags {

edges {

node {

label

color

}

}

}

accountUsers(first:10) {

edges {

node {

The Power of Relay: The Entry Point to GraphQL 73

id

avatarUrl

}

}

pageInfo {

totalAccountUsers

}

}

recentConversations(first:10) {

edges {

node {

lastMessage

updatedAt

status

}

pageInfo {

totalConversationCount

}

}

}

}

}

Their reaction?

“We were able to expand our query based
on the needs of the client and request a ton
of information that usually would have taken
multiple requests, a lot of boilerplate and un-
necessary code written on both the client and
the server.The payload now conforms to ex-
actly what the customer wanted, and it gives
the server the ability to optimize the resources
necessary to compute the answer. Best of all,

The Power of Relay: The Entry Point to GraphQL 74

this was all done in a single request. Unbeliev-
able. Welcome to the future.”

Welcome to the future, indeed.

The Bad

There’s a lot of good things about Relay, but there’s some
underlying issues behind each benefit. Take, for instance,
the idea of mutation handling within Relay itself. When
mutations occur, especially when they’re done in an op-
timistic update paradigm, you run into some significant
issues.

For instance, when querying a database with multiple
fields in the GraphQL schema, you’re essentially updating
the client multiple times, the backendmultiple times, and
hoping the related graph part each updates properly.
Nine times out of ten, they do — but even a single failure
could have a rolling effect on the backend at large.

Further, the idea of optimistic updates is great in theory,
but adds some logic responsibility on the client-side de-
veloper that may or may not be useful in all use cases.
While large edits would definitely benefit from such an
update scheme, simple updates and mutations do not
require simulation. What this means is a ton of logic
required to be implemented in the client-side team, with
the server-side team having very little responsibility for
ensuring cross compatibility.

There is, of course, the concern over loss of data and
validation in such a system as well. With each increasing
level of complexity in this situation, you’re reducing the

The Power of Relay: The Entry Point to GraphQL 75

efficiency that makes Relay such a good sell in the first
place.

The main issue raised towards Relay, however, is that
it’s not technically necessary — while the functionality
of Relay is impressive, there’s a bevy of solutions both
unique and already integrated into common languages
and architectures that mirror the functionality such that
Relay might simply be reinventing the wheel.

Standard GraphQL can be used without Relay, especially
on projects with a smaller scope than Facebook, without
much loss of functionality. Other solutions like Cashay
mirror the cache storage solution for domain states in a
simpler, more user-friendly format.

A REST Replacement

There’s been some contention over exactly why we need
Relay — or even GraphQL, for that matter. The develop-
ment of GraphQL and Relay comes from the idea that
there’s something fundamentally wrong or done poorly
in REST, a prospect that not everyone agrees with.

Let’s state upfront that almost everything that GraphQL
does can be done in REST, though perhaps less effi-
ciently. Fetching complex object graphs is easier done in
GraphQL, but the same functionality can be replicated
with constructing an endpoint around the given data sets
as a subset of the greater whole.

These complex requests are made easier with the fact
that HTTP can send parallel network requests, though
with greater overhead. And what limitations exist in this
current solution, HTTP/2 is attempting to solve them, and
(in some opinions) to great effect.

https://medium.com/@matt.krick/how-cashay-combines-graphql-with-redux-a67158499d07#.i3llazvv1

The Power of Relay: The Entry Point to GraphQL 76

There’s also the issue of just what Relay and GraphQL are
designed to handle. The twowere developed by Facebook
for Facebook — a site that deals with thousands of meta-
data points and relations that the average developer may
never come across. In this case, for many people, it’s a
case of killing weeds with a flamethrower — yes, it’s a
solution, but it’s an over-engineered one.

A good portion of criticism towards GraphQL and Relay in
principle is the fact that many of the issues people have
with REST aren’t issues with RESTful architecture, but with
the common implementations. REST supports content
negotiation, is feature rich with everything HTTP has to
offer, and has basic over and under fetching prevention
solutions.

Essentially speaking, the problems that Facebook set out
to fix are, in the eyes of many people issues of poor REST
implementations and improper coding techniques, not
the actual REST architecture itself.

Regardless of which side you fall on, it basically boils
down to this — is adopting GraphQL and Relay worth
the effort when considering that many of its features can
be replicated somewhat in REST? What are your specific
needs? Do you have Facebook level (and style) data to
manage? If not, GraphQL, and thereby Relay, may not be
the best choice in the world.

Conclusion

Relay is powerful — but like GraphQL, it’s not a magic
bullet. High-volume data in Relay is the gold standard for
efficient data handling, but for standard data handling,
you really have to questionwhether or not it is truly better

The Power of Relay: The Entry Point to GraphQL 77

than proper RESTful design.

That being said, Relay is still in its infancy. It came from
Flux, and just like Flux, is constantly being iterated upon
and expanded into bigger, better things. As time goes on,
much of the concern about Relay will likely be assuaged,
with its functionality expanded further while being made
more efficient.

10 GraphQL Consoles in
Action

Most web API providers probably already know about
GraphQL by now. It’s the API query modeling language
making waves throughout the API industry, allowing de-
veloper users to interact with a web API in an arguably
cleanermethod. The industry is still divided, though.While
some venture to say it will replace REST in its entirety,
others question whether GraphQL is worth it. Outside of
Facebook, the founders of GraphQL, there are actually
quite a few API providers actually implementing GraphQL
in practice. Usage keeps popping up in new environments
throughout many public APIs, often utilizing GraphiQL,
the official open source visual console for interactingwith
API calls. These visual interactive aids are designed to
help developer users query data and performmutations.
So, to add a little validation of the technology, let’s check

https://github.com/graphql/graphiql

10 GraphQL Consoles in Action 79

out some companies officially implementing it with their
public API programs. We’ll list 10 APIs using GraphQL,
and test out theirGraphiQL consoleswithmock use cases
to sample the behavior.

GraphiQL: GraphQL API Explorer

GraphiQL is an open source IDE console for exploring a
GraphQL server. It displays a code editor with autocom-
plete on the far left, comes with error highlighting, query
results in the middle column, and a documentation ex-
plorer on the far right. You can demo the Star Wars API to
test it out. The Query Variables on the bottom left show
what is actually being manipulated in the request. For
a developer consumer, a Graph_i_QL interface could be
helpful for building GraphQL queries, viewing the types
of data that are available, and more.

An empty GraphiQL console

http://graphql-swapi.parseapp.com/

10 GraphQL Consoles in Action 80

1: GraphQL Hub

First off, let’s consider the GraphQLHub aggregation. Cre-
ated by Clay Allsopp, you can use it to explore 5 popular
APIs: Hacker News, Reddit, GitHub, Twitter, and Giphy
using GraphQL. Though it’s technically an unofficial proxy
— not manufactured by these companies — it’s a unique
demonstration of the power of GraphQL to combine dis-
parate elements into the same query style.

Query of recent Hacker News posts

Say I wanted machine readable data of my last 5 posts to
Hacker News, with the URL, score, and unique identifier.
Using the GraphQLHub interface, we can easily query this
and read the results in JSON. Reminiscent of a Postman
API collection, a GraphQL “hub” could be used by a team
to easily interact with their own unique API dependencies.

https://www.graphqlhub.com/
https://twitter.com/clayallsopp

10 GraphQL Consoles in Action 81

2: Brandfolder

Brandfolder is an asset management service. With their
API, developers can programmatically upload or retrieve
brand asset files like images or fonts. Their GraphQL play-
ground uses GraphQLify to provide a GraphQL server and
schema to act as a middlemen between the Brandfolder
backend and frontend, translating a JSON API to interact
with React/Relay applications. To play around here you’ll
need an account and authorization.

Testing Brandfolder’s GraphQL consolewill require account authoriza-
tion

3: Buildkite

Buildkite specializes in helping companies with continu-
ous deployments. They’ve been driving front end devel-
opment through the https://graphql.buildkite.com end-
point. Their GraphQL API has even leapfrogged the web
UI, as you can use it to schedule builds. Also built on the
official open source GraphiQL, their GraphQL console is
accompanied by a thorough step-by-step walkthrough; a
good thing to consider to help new developers. As Tim
Lucas of Buildkite states: “GraphQL was made to be hu-
man friendly and empower people to easily use, explore,
integrate with APIs.”

https://graphql.brandfolder.com/
https://graphql.brandfolder.com/
https://github.com/brandfolder/graphqlify
https://graphql.buildkite.com/explorer
https://building.buildkite.com/tutorial-getting-started-with-graphql-queries-and-mutations-11211dfe5d64#.z9gd1a63t

10 GraphQL Consoles in Action 82

Buildkite demonstrates how to use GraphiQL to perform mutations
on a deployment schedule

4: EHRI

The European Holocaust Research Infrastructure (EHRI)
provides access to holocaust related data and archive
materials held in institutions throughout Europe. In ad-
dition to offering a Search API to access the database, The
EHRI portal provides an experimental GraphQL API. As
EHRI describes, GraphQL is a “faster and more efficient
option when the data required in known in advance.” This
echoes issues that some have with GraphQL being only
accessible by developers familiar with the API.

5: GDOM

GDOM is a web parser open sourced on GitHub. Using
the Graphene framework, GDOM uses GraphQL syntax

https://portal.ehri-project.eu/api/v1
https://portal.ehri-project.eu/api/graphql/ui

10 GraphQL Consoles in Action 83

to traverse and scrape content off web pages. Another
Hacker News example, here we use GraphQL syntax to
traverse the Y Combinator home page and return top
stories:

GraphiQL in the context of DOM traversal and scraping

6: GitHub

From using ChatOps to initiating other company cultural
innovations, GitHub is quick to embrace cutting edge op-
erational improvements. They’ve taken a stab at GraphQL
as well. Currently in an early access alpha stage, you’ll
have to register for the GitHub pre-release program to
use it (which just means signing in via your GitHub ac-
count and accepting a terms of use). Let’s use the GitHub
GraphQL API to retrieve some basic account information:

Retrieving account informationwith theGitHubGraphiQLAPI sandbox

http://nordicapis.com/12-frameworks-to-build-chatops-bots/
https://www.fastcompany.com/3020181/open-company/inside-githubs-super-lean-management-strategy-and-how-it-drives-innovation
https://www.fastcompany.com/3020181/open-company/inside-githubs-super-lean-management-strategy-and-how-it-drives-innovation

10 GraphQL Consoles in Action 84

When will this become a full release? Well, GitHub places
their GraphQL on the long-term side of their Platform
Roadmap.

7: HIV Drug Resistance Database

GraphQL may also be useful in the context of academic
research. Stanford University is currently using GraphiQL
to visually query their Sierra Web Service, which interacts
with their curated database of HIV drug resistance data.
Below is a GraphQL call to retrieve a genomic sequence
from a virus with a specific mutation:

Sequence analysis on Stanford’s GraphiQL console

8: Helsinki Open Data

HSL is the **public transportation **authority in theHelsinki,
Finlandmetropolitan region. They producedata on routes,
train stations, and more, which is all publicly accessible
as open data on the HSL Developer Community. Say we

https://developer.github.com/early-access/platform-roadmap/
https://developer.github.com/early-access/platform-roadmap/
https://hivdb.stanford.edu/page/graphiql/
https://hivdb.stanford.edu/page/webservice/
https://www.hsl.fi/en
http://dev.hsl.fi/

10 GraphQL Consoles in Action 85

wanted to retrieve basic information on all transit stations
in the Helsinki area; using the HSL GraphiQL console we
can use a single GraphQL query to list stations and fields
such as station name, specific location, and more:

A GraphQL query to retrieve information on transit stations in the
Helsinki area. No “Prettify” option?! Oh well.

9: melodyCLI

MelodyCLI is a dependency manager for Go. It helps
save time by caching Go repositories, using a GraphQL
API to routinely expose metadata on dependencies. Be-
low we’ve used the melodyRepo Playground GraphiQL
interface to retrieve dependency information on a specific
GitHub package:

http://dev.hsl.fi/graphql/console/
http://dev.hsl.fi/graphql/console/

10 GraphQL Consoles in Action 86

MelodyCLI GraphQL playground call to sample dependency manage-
ment functionality

10: SuperChargers.io

Superchargers.io is a web app map that provides the
locations of Tesla stores, powering stations, and other
service centers. Wholly based on a GraphQL API, the site
does a nice job of onboarding developers to understand
how queries behave.

https://www.superchargers.io/

10 GraphQL Consoles in Action 87

Query to Superchargers.io retrieves all Supercharger stations in Eu-
rope.

11: Microsoft

Some teams atMicrosoft are considering GraphiQL adop-
tion. Dimitry Pimenov, a Program Manager at Microsoft
Graph sharedwith Nordic APIs a test of their live GraphQL
console. Essentially, how the tooling works is it takes in an
OData API description, parses it, and creates a GraphQL
schema and code generates the necessary resolvers. Ac-
cording to Pimenov, though there are some performance
bottlenecks with this approach, it does provide a much
better developer experience as far as resource discovery
goes.

http://graphql-demo.azurewebsites.net/?query=%7B%0A%20%20me%20%7B%0A%20%20%20%20displayName%0A%20%20%20%20officeLocation%0A%20%20%20%20skills%0A%20%20%20%20directReports%20%7B%0A%20%20%20%20%20%20id%0A%20%20%20%20%7D%0A%20%20%20%20messages(id:%20%22AAMkAGVmMDEzMTM4LTZmYWUtNDdkNC1hMDZiLTU1OGY5OTZhYmY4OABGAAAAAAAiQ8W967B7TKBjgx9rVEURBwAiIsqMbYjsT5e-T7KzowPTAAAAAAEMAAAiIsqMbYjsT5e-T7KzowPTAAAeUQdXAAA=%22)%20%7B%0A%20%20%20%20%20%20subject%0A%20%20%20%20%20%20isRead%0A%20%20%20%20%20%20bodyPreview%0A%20%20%20%20%20%20sentDateTime%0A%20%20%20%20%20%20sender%20%7B%0A%20%20%20%20%20%20%20%20emailAddress%20%7B%0A%20%20%20%20%20%20%20%20%20%20address%0A%20%20%20%20%20%20%20%20%7D%0A%20%20%20%20%20%20%7D%0A%20%20%20%20%7D%0A%20%20%7D%0A%7D%0A
http://graphql-demo.azurewebsites.net/?query=%7B%0A%20%20me%20%7B%0A%20%20%20%20displayName%0A%20%20%20%20officeLocation%0A%20%20%20%20skills%0A%20%20%20%20directReports%20%7B%0A%20%20%20%20%20%20id%0A%20%20%20%20%7D%0A%20%20%20%20messages(id:%20%22AAMkAGVmMDEzMTM4LTZmYWUtNDdkNC1hMDZiLTU1OGY5OTZhYmY4OABGAAAAAAAiQ8W967B7TKBjgx9rVEURBwAiIsqMbYjsT5e-T7KzowPTAAAAAAEMAAAiIsqMbYjsT5e-T7KzowPTAAAeUQdXAAA=%22)%20%7B%0A%20%20%20%20%20%20subject%0A%20%20%20%20%20%20isRead%0A%20%20%20%20%20%20bodyPreview%0A%20%20%20%20%20%20sentDateTime%0A%20%20%20%20%20%20sender%20%7B%0A%20%20%20%20%20%20%20%20emailAddress%20%7B%0A%20%20%20%20%20%20%20%20%20%20address%0A%20%20%20%20%20%20%20%20%7D%0A%20%20%20%20%20%20%7D%0A%20%20%20%20%7D%0A%20%20%7D%0A%7D%0A

10 GraphQL Consoles in Action 88

Does Increased Usage Validate
GraphQL?

Now used within asset management, academic study,
public transportation, andmore, you can see thatGraphQL
is getting around. However, trends alone shouldn’t vali-
date the adoption of technology. So, why are more and
more groups appreciating GraphQL? Well, as we’ve dis-
cussed before, there are some potential benefits:

• Better query efficiency: You can querymultiple API
calls simultaneously.

• More elegant data retrieval: Chaining calls can
return a lot of data with a single request.

• Low adoption overhead: Since GraphQL is a wrap-
per that can be defined, you don’t have to replace a
REST system.

As the team behind melodyCLI put it:

“We chose GraphQL to give us greater flexibil-
ity in how metadata is structured while giving
clients more flexibility in how it’s queried”

GraphQL should not be viewed as the stand-alone end
all solution for everyone — many APIs still need devel-
oper documentation and strong API versioning strate-
gies. A pain point is a lack of onboarding material in the
GraphiQL interface; for developers unfamiliar with API
calls, knowing how to structure a query is difficult as you
will have to dig into documentation for the correct ids,
field names, Strings, etc.

http://nordicapis.com/5-potential-benefits-integrating-graphql/
http://nordicapis.com/5-potential-benefits-integrating-graphql/
https://melody.sh/docs/api
http://nordicapis.com/simultaneous-platform-wide-versioning-how-to-implement-api-to-sdk-synchronicity/

10 GraphQL Consoles in Action 89

Tips on Making GraphQL / GraphiQL
Awesome

With that in mind, for API providers considering providing
a GraphiQL style IDE, here are some tips for getting the
most out of it:

• Introduce what GraphQL is: The technology is still
new to many, and they would love your help in
structuring their first queries.

• HaveexampleGraphQLqueries: Auto-fill theGraphiQL
skeletonwith sample queries to help users get started.
The Superchargers.io FAQ, for example, links to 4
different sample queries that populate a GraphiQL
console.

• Have supplementary tutorials or FAQs on the
side that explain your GraphQL schema and fields.

• Brand it: Lastly, it doesn’t hurt to include your own
skins. Includebranding on topof the blankGraphiQL
layout to make it your own.

More Resources:

• Facebook cites roughly 70 companies implementing
GraphQL here

• “GraphQL — A Legit Reason to Use It,” Edge Coders
• APIs.guru’s ongoing Collection of GraphQL APIs
• To help you get started, see this comprehensive list
of community GraphQL libraries and tools

• Bruno Pedro of Hitch hq provides the counter argu-
ment: 3 reasons not to use GraphQL

https://www.superchargers.io/faq
http://graphql.org/users/
https://edgecoders.com/graphql-a-legit-reason-to-use-it-7858ce31638a#.5hj81ainx
https://github.com/APIs-guru/graphql-apis
https://github.com/chentsulin/awesome-graphql
https://github.com/chentsulin/awesome-graphql
https://blog.hitchhq.com/graphql-3-reasons-not-to-use-it-7715f60cb934#.j0xhx31xg

10 GraphQL Consoles in Action 90

• Learn GraphQL: Step by step tutorial introduction to
GraphQL

https://learngraphql.com/

10 Tools and Extensions For
GraphQL APIs

With the surge of interest in GraphQL, a vibrant new
ecosystemof supplementary software has quickly emerged.
Open source communities and entrepreneuring startups
alike are validating new GraphQL use cases, filling in
GraphQL implementation gaps, and enabling more and
more developers to adopt GraphQL practices with de-
creased overhead through the use of some pretty awe-
some tools.

This is fantastic news for the query language, because
Lee Byron, a designer of GraphQL at Facebook, recently
noted that in order for GraphQL to reach ubiquity, the
ecosystem desperately needs additional tooling:

“Where we definitely still need focus is in build-
ing and improving the tools for using GraphQL

https://twitter.com/leeb
https://www.youtube.com/watch?v=zVNrqo9XGOs&t=38m35s
https://www.youtube.com/watch?v=zVNrqo9XGOs&t=38m35s

10 Tools and Extensions For GraphQL APIs 92

and lots of different environments”

Whether these tools handle performance analysis of
graphical services, are pre-built GraphQL servers, or of-
fer IDEs for exploring GraphQL schemas, a lot can be
done to improve the GraphQL usability and adoption
experience. In this article, we’ll feature a short curated
selection of various kinds of tools that can be used to
explore GraphQL relationships, document a GraphQL
API, optimize and monitor a GraphQL API, map a REST
API to GraphQL, and much more. If you have undergone
a GraphQL transformation, or are planning one out, you
may want to consider whether extensions like these may
be a helpful addition to your API’s stack.

List of 10+ Tools & Extensions for
GraphQL APIs

1: GraphiQL

An in-browser IDE for exploring GraphQL APIs Repo | Demo

As we’ve previously discussed, many GraphQL APIs use
this open source console as an interactive API playground.
GraphiQL is the popular Integrated Development Envi-
ronment (IDE) for interacting with GraphQL API calls, en-
abling developers to query data and perform mutations.

This IDE is relatively easy to implement; forNode.js servers,
express-GraphQL can automatically generate GraphiQL.
Since it’s built on React, GraphiQL can also be injected
with unique CSS for custom branding.

https://github.com/graphql/graphiql
http://graphql.org/swapi-graphql/
http://nordicapis.com/10-graphql-consoles-in-action/
https://github.com/graphql/express-graphql

10 Tools and Extensions For GraphQL APIs 93

The GraphiQL left column provides a space to enter queries with
a syntax editor to search for relevant schema using autocomplete.
When the request is run, the response is displayed on the right column

Having visual aid in the form of an API sandbox, play-
ground, CLI, or other interactive means is an important
facet of supporting a living, breathing API program that
caters to the needs of your audience.

2: GraphQL Voyager by APIs.guru

� Represent any GraphQL API as an interactive graph Repo
| Demo

If you’re hoping to visually see how relational your data
is, running it through GraphQL Voyager can make for a
cool experiment. Voyager takes a GraphQL API and turns
it into a visual graph; after setting a root schema, you can
visually view how fields are connected to types. Voyager is
interactive, too— selecting a type highlights the fields it is
comprised of, and links to relevant data within the graph.

Echoing Lee Byron, APIs.guru founder Ivan Goncharov

http://nordicapis.com/virtualization-sandboxes-playgrounds-wholesome-api/
http://nordicapis.com/the-return-of-the-cli-clis-being-used-by-api-related-companies/
https://github.com/APIs-guru/graphql-voyager
https://apis.guru/graphql-voyager/

10 Tools and Extensions For GraphQL APIs 94

recently told Nordic APIs:

“Writing advanced tooling which works with
any existing GraphQL API is possibly one of the
critical things that REST APIs are missing.”

GraphQL Voyager provides a left column that describes
field information, and a visual interface that provides
quick navigation. Users can also simplify the graph by
eliminating Relay wrapper classes. Beyond being a sweet
visualization, the Voyager tool could help companies en-
vision their data model, and spark conversations on re-
lational data — finally, we can view the “graph” behind
GraphQL.

GraphQL Voyager, by APIs.guru

3: GraphCMS

Build a GraphQL Content API in Minutes

GraphCMS is an API-centric ContentManagement System
(CMS) that is intimately tiedwith GraphQL. It lets you build

https://graphcms.com/

10 Tools and Extensions For GraphQL APIs 95

a hosted GraphQL backed for web apps, providing tooling
to manage content. Users define data structures, validate
them in a GraphQL console, and see the representation
in the user interface, all within the same platform.

While GraphCMS is perhaps not a good fit for an ex-
isting API platform, it would cater well to a blog, web
app, or other content structures that require the ability
to programmatically share data. A GraphQL-based CMS
would be an interesting alternative to traditional CMSs
like Wordpress or Drupal, and would enable a more fu-
turistic content management framework that comes API-
equipped and is thus a more flexible management layer
for end user interfaces.

GraphCMS

4: GraphQL Docs by Scaphold.io

Clean, minimalist documentation for GraphQL APIs Repo |
Demo

Need static documentation for a GraphQL API schema?
Look no further thanGraphQLDocs. The sitewill generate

https://www.digitalsurgeons.com/thoughts/strategy/the-content-management-system-of-the-future/
https://github.com/2fd/graphdoc
https://graphql-docs.com/docs/?graphqlUrl=https://spotify-graphql-server.herokuapp.com/graphql
https://graphql-docs.com/

10 Tools and Extensions For GraphQL APIs 96

simple, functional documentation in under 10 seconds
given a GraphQL endpoint URL. Visitors can choose to
catalogue their API documentation publicly, or to keep it
private.

An open source equivalent for static documentation is
graphdoc— fork this to generate and host GraphQL docs
on your own. For both, the result is a clean interface,
search mnenu, and links to schema definitions for object,
and more.

![GraphQL schema definition for the Album Object in the
Spotify API)

5: GraphQL Faker

Mock or extend your GraphQL API with faked data. Repo

If you are mocking up a barebones API, why not add
some lorem ipsum data to test things out? With GraphQL
Faker, GraphQL API developers can insert realistic data to
mimic real life results. It’s powered by faker.js, enabling
developers to mock over 60 kinds of realistic data, like
street address, first and last name, avatar images, and
more. All you need to initiate it is to write a GraphQL
IDL, and GraphQL faker provides some examples to get
started within the IDL editor. It’s as simple as adding a
directive to a field or custom scalar definition:

type Person {

name: String @fake(type: firstName)

gender: String @examples(values: ["male", "female"])

}

https://github.com/2fd/graphdoc
https://github.com/APIs-guru/graphql-faker
https://github.com/marak/Faker.js/

10 Tools and Extensions For GraphQL APIs 97

6: Swagger to GraphQL

Migrate from REST to GraphQL in 5 minutes Repo

For those API providers entrenched with the traditional
REST model, they may be indifferent to try out GraphQL.
Thismapper takes thepain away, taking a Swagger schema
and automatically wrapping it to GraphQL. Tooling like
this could be leveraged to decreasemigration headaches,
and enable a provider tomaintain both aREST andGraphQL
facade. For more, read the creator’s thoughts on moving
an existing API from REST to GraphQL.

7: GraphQL IDE

An extensive IDE for exploring GraphQL APIs Repo

An Integrated Development Environment, or IDE is typi-
cally a source code editor that maximizes developer pro-
ductivity with things like debugging, code completion,
compiling, and interpreting abilities. The GraphQL IDE
is an alternative to GraphiQL, but the keyword here is
extensive. It offers additional project management fea-
tures, custom and dynamic headers, import/export abil-
ities, and the ability to store queries and view a query
history.

8: GraphQL Network

Chrome Devtool that provides a “network”-style tab to allow
developers to debug more easily. Repo | Demo

Many of us techies are Google Chrome power users, so
a GraphQL browser tab is a hot ticket or any serious

https://github.com/yarax/swagger-to-graphql
https://medium.com/@raxwunter/moving-existing-api-from-rest-to-graphql-205bab22c184
https://medium.com/@raxwunter/moving-existing-api-from-rest-to-graphql-205bab22c184
https://github.com/redound/graphql-ide
https://github.com/Ghirro/graphql-network
https://chrome.google.com/webstore/detail/graphql-network/igbmhmnkobkjalekgiehijefpkdemocm

10 Tools and Extensions For GraphQL APIs 98

GraphQL API developer. Called GraphQL Network, this
helpful tab is similar to viewing network requests in the
Chrome DevTool — which is great for debugging RESTful
API calls, but falls shortwhenworkingwithGraphQL, since
“/graphql” is usually displayed as the endpoint, meaning
that differentiating seperate requests is a pain.

The tab shows a concise list of recent GraphQL requests,
listing HTTPmethod name, status, and type of request. In
addition, GraphQL Network also gives a raw view of the
string of GraphQL being sent, as well as a computed view
as the server interprets it. Having separate entries laid
out as well as being able to view the machine-readable
fragments in this way could be helpful to monitor and
debug GraphQL queries.

9: Graphcool

Flexible backend platform combining GraphQL+ AWS Lambda
Site

With flexible, scalable, serverless architecture the rage,
having an agile backend ready to go is an interesting
prospect, especially when it’s GraphQL compatible out-of-
the-box. Graphcool is a platform to aidGraphQL schema
design and app backend development, coming with a
visual console to design and edit your your data schema,
the ability to create advanced GraphQL data models,
custom fields, and relations between data. With many
integrations with popular tech like AWS Lambda, Algolia,
and Auth0, Graphcool looks to be a powerful tool for
modern database management.

https://developers.google.com/web/tools/chrome-devtools/network-performance/reference
https://www.graph.cool/
http://nordicapis.com/the-benefits-of-a-serverless-api-backend/

10 Tools and Extensions For GraphQL APIs 99

Screenshot of the Graphcool console, where you can add new fields
and data relations.

10: Optics by Apollo

Optimize GraphQL queries Website | Apollo on Github

To round off our list of GraphQL tooling, last but certainly
not least is Optics, a product for monitoring GraphQL
APIs. Optics is an analytics solution for GraphQL APIs
that traces how queries run, helps you see what types of
queries are being performed and their frequencies. ny As
we’ve discussed before, API metrics are crucial, and any
web API can benefit from adding an analytics solution to
their platform. Seeing request volumes displayed visually,
as well as having a better grasp on bottlenecks like latency
issues is necessary for optimizing performance and im-
proving page load times.

Optics is developed by Apollo, who are big contributors to
the GraphQL ecosystem— their Apollo Client is a flexible,
production ready GraphQL client for React and native
apps, and Apollo also hosts events to spread GraphQL
knowledge.

https://www.apollodata.com/optics/
https://github.com/apollographql
http://nordicapis.com/success-vs-failure-the-importance-of-api-metrics/
https://www.apollodata.com/
http://dev.apollodata.com/

10 Tools and Extensions For GraphQL APIs 100

Example Optics visualization on latency trends over time

Final Thoughts

Other significant tools include Thunder, a GraphQL server
for Go, Join Monster, an NPM package for arbitrating
issues between GraphQL and SQL database, or Dgraph,
a fast database that works with GraphQL.

“Great tools are will what will make GraphQL
ubiquitous” -Lee Byron, GraphQL/Facebook

There are many more that seem to be emerging daily;
hopefully with the advent of tools like the onesmentioned
in this article, more providers can reap the benefits of
GraphQL and increase general extensibility with expend-
ing little effort.

Did we leave out any awesome GraphQL tools? Please
comment below!

https://github.com/samsarahq/thunder
https://github.com/stems/join-monster
https://dgraph.io/

10 Tools and Extensions For GraphQL APIs 101

Resources

• Facebook’s Draft RFC Specification for GraphQL
• Visit the Awesome GraphQL List for many more
GraphQL tools.

http://facebook.github.io/graphql/
https://github.com/chentsulin/awesome-graphql#tools

What The GraphQL Patent
Release Means For the API

Industry

GraphQL has driven much of the conversation around
modern API web design, and for good reason — it’s pow-
erful, extensible, and very useful for high data query ap-
plications. The ability to request data in a predetermined,
knowable format, and the ability to collate endpoints into
a single external point, has made GraphQL something
that powers some pretty huge projects.

Unfortunately, reliance on anear-ubiquitous format comes
with a negative – when a change is made to GraphQL,
its effects are wide-ranging and significant. This can be
seen in the recent troubles concerning GraphQL patent
licensing and the disputes that have arisen – a simple
change of license format and the resultant understanding

What The GraphQL Patent Release Means For the API Industry 103

(and in some cases, misunderstanding) in the community
has sent shockwaves through the API landscape.

Today, we’re going to talk about some purported issues
related to the GraphQL patent release to provide con-
text and a bit of clarity. We’ll take a look at whether or
not the GraphQL license issue is as significant as first
thought, and more to the point, what the newly released
patent scheme from GraphQL actually means for most
providers.

Background

For those who don’t knowwhat GraphQL is, it can broadly
be summarized as an application layer query language.
GraphQL interprets strings from the client, and returns
data in an understandable, predictable, pre-definedman-
ner. This is a very short, summarized explanation of what
GraphQL does, but there is so much more that makes it
special – for a more complete summary, check out our
piece on the potential benefits of GraphQL adoption.

What ismore important to this discussion is howGraphQL
was created. After internal development began in 2012 at
Facebook, GraphQL was released publicly in 2015, offer-
ing an alternative to the dominant architectures of the API
space, notably REST.

GraphQL was initially developed to help Facebook cope
with challenges in fetching specific data from their collec-
tion of services without introducing bloat and complexity.
By allowing the client to define the expected data for-
mat, Facebook, through GraphQL, was able to design a
methodology to deliver data in a more usable, efficient
manner.

http://graphql.org/
https://nordicapis.com/5-potential-benefits-integrating-graphql/
https://nordicapis.com/5-potential-benefits-integrating-graphql/
https://nordicapis.com/designing-a-true-rest-state-machine/

What The GraphQL Patent Release Means For the API Industry 104

This usability and efficiency was very attractive to many
early adopters. Companies like Pinterest, GitHub, and
Shopify quickly began to use GraphQL either wholesale
or in part. During the rush to adopt GraphQL, however,
there were looming, unresolved questions arising from
GraphQL’s creation. There was no licensing language in
the public release, or information on whether or not
the language was patented, and whether or not legal
ramifications were possible. Many questions were left
unanswered.

Developers Express Concern

In September of 2017,GitLabofficially froze their GraphQL
project due to these concerns. In a GitLab issues post,
senior director of legal affairs Jamie Hurewitz stated that
the BSD+Patents license, which Facebook had adopted to
try and alleviate patent concerns, was concerning.

“If we were to allow this license, it could lead
to potential future conflicts with software li-
censed under Apache. Also, we could be im-
pairing the future rights of our customers. Es-
sentially, this is not really an open source
product based on the implications of the li-
cense. While there is no payment of cash, pay-
ment is in the form of giving up future rights.”

The license that had been inserted into the GraphQL
release allowed for the use of GraphQL under certain
terms that removes your license to use GraphQL under
the following terms:

https://nordicapis.com/10-awesome-tools-and-extensions-for-graphql-apis/
https://nordicapis.com/security-points-to-consider-before-implementing-graphql/
https://www.theregister.co.uk/2017/09/20/gitlab_suspends_graphql_project_over_facebook_license_terms/
https://twitter.com/hurewitzjamie?lang=en

What The GraphQL Patent Release Means For the API Industry 105

“The [patent] license granted … will terminate
… if you … initiate directly or indirectly, or take
a direct financial interest in, any Patent As-
sertion: (i) against Facebook … (ii) against any
party if such Patent Assertion arises … from
any software… of Facebook … or (iii) against
any party relating to the Software.”

In other words, developers were free to use GraphQL,
as long as they never challenged Facebook over patent
infringement from anything built upon their system by
Facebook. Unresolved issues caused outrage among pro-
grammers. It was very significant for the community of
GraphQL adoptees, and led to many developers pulling
away from Facebook and its new patent.

Developer and attorney Dennis Walsh subsequently dis-
cussed this issue in a lengthy analysis onMedium,wherein
he posited that “Whether Facebook wants to assert these
patents is the province of gut feelings and lore. I don’t believe
that Facebook ever offensively litigated a patent, but the
potential for litigation is more than theoretical — it’s very real
if they choose that path.” It was clear that for developers
like Walsh, the idea that you had a license to GraphQL
as long as you didn’t try to patent or protect your own
processes and developments was troublesome.

On August 30th, the co-inventor of GraphQL at Facebook,
Lee Byron, addressed concerns on GitHub, and stated
that hewas “aware” of the patent problem, and that it was
currently being worked on. He stated:

“I’ll bring this to the attention of our legal coun-
cil for their suggestion on how to resolve this
issue. We definitely want to ensure the com-
munity has all necessary rights to be able to

https://qz.com/1087865/outraged-programmers-stood-up-to-facebook-fb-over-open-source-licensing-and-won-sort-of/
https://qz.com/1087865/outraged-programmers-stood-up-to-facebook-fb-over-open-source-licensing-and-won-sort-of/
https://twitter.com/lawjolla
https://medium.com/@dwalsh.sdlr/using-graphql-why-facebook-now-owns-you-3182751028c90
https://github.com/facebook/graphql/issues/351

What The GraphQL Patent Release Means For the API Industry 106

use GraphQL! I’ll make sure we get a speedy
resolution.”

Finally, on September 26th, 2017, Facebook relicensed
GraphQL under an OWFa 1.0 license, granting a per-
petual license to users of GraphQL. While this definitely
improves the situation, easing many of the developer
issues surrounding the issue, there may still be some
cause for concern.

Out of the Frying Pan…

There’s still some cause for concern around the new li-
censing scheme, however. Facebook has broadly adopted
theMIT license, which doesn’t expressly include a patent
grant. There was some concern expressed, such as that
of RedMonk founder Stephen O’Grady, that adopting MIT
over the Apache license, which gave a more clear patent
situation to developers, created new concerns:

“Theproblem is that by choosing this approach,
Facebook does not convey with theMIT license
any patent grants as they would have under
the Apache. If Facebook has patents that read
onReact, in otherwords, users of that software
are not given an explicit license to them via
MIT, only an untested implicit license.”

To O’Grady, this essentially means that Facebook has
resolved one patent issue by introducing a second.

Many of these issues are ones that must be tested to be
confirmed – in other words, until a patent infringement

http://redmonk.com/sogrady/2017/09/26/facebooks-bsd-patents/

What The GraphQL Patent Release Means For the API Industry 107

suit is drawn against or by Facebook, most of the con-
cerns are simply conjecture. Even so, the fact remains
that this continues to be, for some, a concerning devel-
opment. This is certainly an artifact of the API develop-
ment world as a whole, and is something that will have
to be tested, vetted, deprecated, and rebuilt as time goes
on.

Patents in the United States were originally envisioned
during a time where reproduction could take months at
great expense to the creator. Patents were put in place
to “promote the progress of science and useful arts”
according to its Constitutional call. At the time, the idea
of rapidly developing upon an open source standard and
forking these projects into additional sub-developments
was simply impossible to imagine, and as such, applying
patents to the modern web world is resulting in some
significant complexity.

Is This a Concern?

That being said, there are just asmany pundits suggesting
that the issue has largely beenblownout of proportion.
The termination of a patent due to legal proceedings is
common in some spaces, and in fact has been practiced
by policies applied to such juggernauts as the WebM
codec from Google. Such patent terminations, termed
“defensive termination provisions”, are largely common
in enterprise implementations, and in many cases, their
full teeth have yet to be significantly bared in a legal
proceeding.

It should also be noted that the defensive termination
provision as noted in Facebook’s GraphQL documenta-
tion was not nearly as extreme as some others. The

https://fairuse.stanford.edu/law/us-constitution/

What The GraphQL Patent Release Means For the API Industry 108

Mozilla Public License, for instance, not only strips your
patent license in response to legal challenges, but your
copyright license as well – without the copyright license,
though you may lose the patent license, you could still
in theory continue to use the code. With a copyright
termination, however, you would be legally obligated to
stop using your derivative code entirely.

That is obviously a much more extreme type of license
termination, but the issue remains at the forefront of
many people’s discussions when adopting GraphQL.

Oil and Water

While some have tried to connect some sort of nefarious
purpose to the patent issues at hand, the truth is that
whatwe’rewitnessing is a collision of open source ethos
with corporate reality. Facebook is a corporation, and
as such, it’s to be expected that they would do everything
they can to look after their best interest. This is an unfor-
tunate fact of the corporateworld, especially for a publicly
traded company.

On the other hand, we have open-source philosophy;
the idea that code should be shared, developed upon,
refined, and extended, with minimal if any protections
applied to the foundational code base. While this is, in
theory, benefits everyone – resulting in increase security,
more refined code, and wider adoption – the fact is that
a corporation like Facebook would likely find this sort
of approach dangerous considering how many of their
core functions are driven by the codebase that is being
patented.

Perhaps the most clear reason for much of this concern

What The GraphQL Patent Release Means For the API Industry 109

is the fact that intent can’t really be communicated in
patent legalese – whether or not Facebook would use
such a patent agreement as ameans to attack developers
is an entirely different conversation from whether or
not the actual patent license as it currently is would be
acceptable to most developers. Unfortunately, the two
topics are being conflated, leading to the issue at hand.

Final Thoughts

So what does this all mean for the API space? It’s easy to
assign nefarious intent to Facebook, but the reality is that
Facebook is a public company – as many companies in
the API community now are. This means that they have
certain concerns that they need to address, and certain
expectations concerning the use of their applications and
codebase.

That being said, stifling open source implementations is a
significant issue – andwhile that’s notwhat’s happening in
this case, the reactions of some providers to the relicens-
ing (such as dropping GraphQL in fear of possible legal
issues) is understandable. That should be the takeaway to
all of this – while there are concerns about patent licenses
within the GraphQL license language,much of the fear is
based on conjecture, and if the possibility of future con-
cern is significant enough to worry an organization, they
should consider moving away from GraphQL and into a
more open-source friendly, freely licensed alternative.

If you do not intend on creating something that is mon-
etized, or the new re-licensing scheme proposed is an
acceptable mitigation, then by all means, continue to
use GraphQL. If you still fear the possible issues in the
future, ensure that your API can behave for a timewithout

https://nordicapis.com/open-api-initiative-means-api-space/

What The GraphQL Patent Release Means For the API Industry 110

GraphQL or any GraphQL-derived functionality. For those
somewhere on the fence, do keep inmind that until there
is court action taken, these fears all conjecture.

What The GraphQL Patent Release Means For the API Industry 111

The GraphQL Community At Large

The community surrounding GraphQL has grown expo-
nentially since developers caught wind. Now, with the
evergrowing proof of its use in the case studies cited in
this volume, we see GraphQLmoving from fad status into
enterprise adoption.

If you would like to participate in the economy forming
aroundGraphQL tooling, or to learnmore about GraphQL
strategy, there are events solely realted to GraphQL. We’ll
surely cover the topic on the blog, but in-personGraphQL-
specific events are listed on this event page site.

Stay Connected

Thank you again to our readers, event attendees, and
event sponsors andpartners. If you appreciatewhatwe’re
doing, consider following @NordicAPIs and signing up to
our newsletter for curated blog updates and future event
announcements.

http://graphql.org/community/upcoming-events/
https://twitter.com/nordicapis
http://nordicapis.com/newsletter/
http://nordicapis.com/blog/
http://nordicapis.com/event-calendar/
http://nordicapis.com/event-calendar/

Nordic APIs Resources

Visit our Youtube Page for
Deep Dives

Watch full videos of high impact API-related talks on our
Youtube Channel. In 2018 and beyond, we will be fea-
turing seminars on niche API topics in our LiveCasts;
hour-long webinars on advanved topics given by core
community members.

https://www.youtube.com/user/nordicapis

Nordic APIs Resources 113

More eBooks by Nordic APIs:

Visit our eBook page to download these eBooks for free!
If you choose to purchase through LeanPub or Amazon,
all proceeds go to the Red Cross’s efforts in Sweden.

Howto SuccessfullyMarket anAPI: The bible for project
managers, technical evangelists, or marketing aficiona-
dos in the process of promoting an API program.

The API Economy: APIs have given birth to a variety of
unprecedented services. Learn how to get the most out
of this new economy.

API Driven-DevOps: One important development in re-
cent years has been the emergence of DevOps â€” a disci-
pline at the crossroads between application development
and system administration.

Securing the API Stronghold: The most comprehensive
freely available deep dive into the core tenants ofmodern
web API security, identity control, and access manage-
ment.

Developing The API Mindset: Distinguishes Public, Pri-
vate, and Partner API business strategies with use cases
from Nordic APIs events.

https://nordicapis.com/api-ebooks/

Endnotes
Nordic APIs is an independent blog and this publica-
tion has not been authorized, sponsored, or otherwise
approved by any company mentioned in it. All trade-
marks, servicemarks, registered trademarks, and regis-
tered servicemarks are the property of their respective
owners.

• Select icons made by Freepik and are licensed by CC
BY 3.0

• Select images are copyright Twobo Technologies
and used by permission.

Nordic APIs AB ©

Facebook | Twitter | Linkedin | Google+ | YouTube

Blog | Home | Newsletter | Contact

http://www.freepik.com/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.twobotechnologies.com/
http://facebook.com/nordicapis
http://twitter.com/nordicapis
https://www.linkedin.com/company/nordic-apis
https://plus.google.com/u/0/+Nordicapis/posts
https://www.youtube.com/user/nordicapis
http://nordicapis.com/blog/
http://nordicapis.com/
http://nordicapis.com/newsletter/
mailto:info@nordicapis.com

	Table of Contents
	Preface: Introduction to GraphQL
	Is GraphQL The End of REST Style APIs?
	Defining REST and its Limitations
	The End Of The Status Quo
	Conclusion

	5 Potential Benefits of Integrating GraphQL
	What is GraphQL
	1 - More Elegant Data Retrieval
	2 - More Backend Stability
	3 - Better Query Efficiency
	4 - GraphQL Is a Specification
	5 - GraphQL Improves Understanding and Organization
	Who Uses It
	Conclusion: Assess

	How to Wrap a REST API in GraphQL
	What is GraphQL?
	Defining a Schema
	Alternatives to this Method
	To Wrap or Not to Wrap
	Conclusion: Wrap or Recode

	Best Practices for A Healthy GraphQL Implementation
	Dogma vs Practices
	Conclusion

	Security Concerns to Consider Before Implementing GraphQL
	GraphQL - A Summary
	Implied Documentation vs. Actual Documentation
	Unified Failures
	Data and Server Transaction Volumes
	Information Hiding and Chattiness
	Authorization and GraphQL
	Measured Optimism

	7 Unique Benefits of Using GraphQL in Microservices
	Clearly Separated Data Owners
	Data Load Control Granularity
	Parallel Execution
	Request Budgeting
	Powerful Query Planning
	Service Caching
	Easy Failure Handling and Retries
	Case Study of Microservices In Action: How GraphQL Benefits Yelp
	Final Thoughts

	Comparing GraphQL With Other Methods to Tether API Calls
	What Do We Mean By Tethering API Calls?
	Benefits of Tethering API Calls
	Drawbacks of Tethering API Calls
	Use Cases
	Alternatives — GraphQL
	Conclusions

	The Power of Relay: The Entry Point to GraphQL
	What's the Difference Between GraphQL and Relay?
	What is Relay?
	The Good
	The Bad
	A REST Replacement
	Conclusion

	10 GraphQL Consoles in Action
	GraphiQL: GraphQL API Explorer
	1: GraphQL Hub
	2: Brandfolder
	3: Buildkite
	4: EHRI
	5: GDOM
	6: GitHub
	7: HIV Drug Resistance Database
	8: Helsinki Open Data
	9: melodyCLI
	10: SuperChargers.io
	11: Microsoft
	Does Increased Usage Validate GraphQL?
	Tips on Making GraphQL / GraphiQL Awesome
	More Resources:

	10 Tools and Extensions For GraphQL APIs
	List of 10+ Tools & Extensions for GraphQL APIs
	1: GraphiQL
	2: GraphQL Voyager by APIs.guru
	3: GraphCMS
	4: GraphQL Docs by Scaphold.io
	5: GraphQL Faker
	6: Swagger to GraphQL
	7: GraphQL IDE
	8: GraphQL Network
	9: Graphcool
	10: Optics by Apollo
	Final Thoughts
	Resources

	What The GraphQL Patent Release Means For the API Industry
	Background
	Developers Express Concern
	Out of the Frying Pan…
	Is This a Concern?
	Oil and Water
	Final Thoughts

	Stay Connected
	Nordic APIs Resources
	Endnotes

